{"title":"类型调用约定","authors":"Maximilian Bolingbroke, S. Jones","doi":"10.1145/1596638.1596640","DOIUrl":null,"url":null,"abstract":"It is common for compilers to derive the calling convention of a function from its type. Doing so is simple and modular but misses many optimisation opportunities, particularly in lazy, higher-order functional languages with extensive use of currying. We restore the lost opportunities by defining Strict Core, a new intermediate language whose type system makes the missing distinctions: laziness is explicit, and functions take multiple arguments and return multiple results.","PeriodicalId":188691,"journal":{"name":"ACM SIGPLAN Symposium/Workshop on Haskell","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Types are calling conventions\",\"authors\":\"Maximilian Bolingbroke, S. Jones\",\"doi\":\"10.1145/1596638.1596640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is common for compilers to derive the calling convention of a function from its type. Doing so is simple and modular but misses many optimisation opportunities, particularly in lazy, higher-order functional languages with extensive use of currying. We restore the lost opportunities by defining Strict Core, a new intermediate language whose type system makes the missing distinctions: laziness is explicit, and functions take multiple arguments and return multiple results.\",\"PeriodicalId\":188691,\"journal\":{\"name\":\"ACM SIGPLAN Symposium/Workshop on Haskell\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium/Workshop on Haskell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1596638.1596640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium/Workshop on Haskell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1596638.1596640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
It is common for compilers to derive the calling convention of a function from its type. Doing so is simple and modular but misses many optimisation opportunities, particularly in lazy, higher-order functional languages with extensive use of currying. We restore the lost opportunities by defining Strict Core, a new intermediate language whose type system makes the missing distinctions: laziness is explicit, and functions take multiple arguments and return multiple results.