在异构处理器上加速天文图像减法

Yan Zhao, Qiong Luo, Senhong Wang, Chao Wu
{"title":"在异构处理器上加速天文图像减法","authors":"Yan Zhao, Qiong Luo, Senhong Wang, Chao Wu","doi":"10.1109/eScience.2013.23","DOIUrl":null,"url":null,"abstract":"Image subtraction is an effective method used in astronomy to search transient objects or identify objects that have time-varying brightness. The state-of-the-art astronomical image subtraction methods work by taking two aligned images of the same observation area, calculating a space-varying convolution kernel for the two images, and finally obtaining the difference image using the convolution kernel. With the need for fast image subtraction in astronomy projects, we study the parallelization of HOTPANTS, a popular astronomical image subtraction package by Andrew Becker, on multicore CPUs and GPUs. Specifically, we identify the components in HOTPANTS that are data parallel and parallelize these components on the GPU and multicore CPU. We divide the work between the CPU and the GPU to minimize the overall time. In the GPU-based components, we investigate the suitable setup of the GPU thread structure for the computation, and optimize data access on the GPU memory hierarchy. Consequently, P-HOTPANTS (our parallel zed HOTPANTS), achieves a 4-times speedup over the original HOTPANTS running on a desktop with an Intel i7 CPU and an NVIDIA GTX580 GPU.","PeriodicalId":325272,"journal":{"name":"2013 IEEE 9th International Conference on e-Science","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Accelerating Astronomical Image Subtraction on Heterogeneous Processors\",\"authors\":\"Yan Zhao, Qiong Luo, Senhong Wang, Chao Wu\",\"doi\":\"10.1109/eScience.2013.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image subtraction is an effective method used in astronomy to search transient objects or identify objects that have time-varying brightness. The state-of-the-art astronomical image subtraction methods work by taking two aligned images of the same observation area, calculating a space-varying convolution kernel for the two images, and finally obtaining the difference image using the convolution kernel. With the need for fast image subtraction in astronomy projects, we study the parallelization of HOTPANTS, a popular astronomical image subtraction package by Andrew Becker, on multicore CPUs and GPUs. Specifically, we identify the components in HOTPANTS that are data parallel and parallelize these components on the GPU and multicore CPU. We divide the work between the CPU and the GPU to minimize the overall time. In the GPU-based components, we investigate the suitable setup of the GPU thread structure for the computation, and optimize data access on the GPU memory hierarchy. Consequently, P-HOTPANTS (our parallel zed HOTPANTS), achieves a 4-times speedup over the original HOTPANTS running on a desktop with an Intel i7 CPU and an NVIDIA GTX580 GPU.\",\"PeriodicalId\":325272,\"journal\":{\"name\":\"2013 IEEE 9th International Conference on e-Science\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 9th International Conference on e-Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eScience.2013.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 9th International Conference on e-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2013.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图像减法是天文学中搜索瞬变物体或识别具有时变亮度的物体的有效方法。目前最先进的天文图像减法方法是取同一观测区域的两幅对齐图像,计算两幅图像的空间变化卷积核,最后利用卷积核得到差分图像。针对天文项目中快速图像减法的需求,研究了由Andrew Becker设计的热门天文图像减法包HOTPANTS在多核cpu和gpu上的并行化。具体来说,我们在HOTPANTS中识别数据并行的组件,并在GPU和多核CPU上并行化这些组件。我们在CPU和GPU之间划分工作,以最大限度地减少总时间。在基于GPU的组件中,我们研究了适合计算的GPU线程结构的设置,并优化了GPU内存层次上的数据访问。因此,P-HOTPANTS(我们的并行HOTPANTS),实现了4倍的加速比原来的HOTPANTS运行在台式机与英特尔i7 CPU和NVIDIA GTX580 GPU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating Astronomical Image Subtraction on Heterogeneous Processors
Image subtraction is an effective method used in astronomy to search transient objects or identify objects that have time-varying brightness. The state-of-the-art astronomical image subtraction methods work by taking two aligned images of the same observation area, calculating a space-varying convolution kernel for the two images, and finally obtaining the difference image using the convolution kernel. With the need for fast image subtraction in astronomy projects, we study the parallelization of HOTPANTS, a popular astronomical image subtraction package by Andrew Becker, on multicore CPUs and GPUs. Specifically, we identify the components in HOTPANTS that are data parallel and parallelize these components on the GPU and multicore CPU. We divide the work between the CPU and the GPU to minimize the overall time. In the GPU-based components, we investigate the suitable setup of the GPU thread structure for the computation, and optimize data access on the GPU memory hierarchy. Consequently, P-HOTPANTS (our parallel zed HOTPANTS), achieves a 4-times speedup over the original HOTPANTS running on a desktop with an Intel i7 CPU and an NVIDIA GTX580 GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Policy Derived Access Rights in the Social Cloud Accelerating In-memory Cross Match of Astronomical Catalogs Scientific Analysis by Queries in Extended SPARQL over a Scalable e-Science Data Store Malleable Access Rights to Establish and Enable Scientific Collaboration An Autonomous Security Storage Solution for Data-Intensive Cooperative Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1