严格非圆信号到达方向估计的确定性极大似然法

Yunmei Shi, X. Mao, Mingyang Cao, Yongtan Liu
{"title":"严格非圆信号到达方向估计的确定性极大似然法","authors":"Yunmei Shi, X. Mao, Mingyang Cao, Yongtan Liu","doi":"10.1109/ICASSP.2016.7472240","DOIUrl":null,"url":null,"abstract":"In this paper, a noncircular deterministic maximum likelihood (NC-DML) estimator for direction-of-arrival estimation of strictly NC signals is devised. Unlike the conventional DML solution for arbitrary signals, the NC-DML exploits the NC properties of the sources by reconstructing the parameter set, significantly decreasing the number of parameters to be considered. For computing the NC-DML, we present a novel NC alternating projection (NC-AP) approach. The NC-AP solution is carried out based on an augmented virtual array structure. Moreover, it also takes the impact of the initial phase shift of the NC signals into account. Simulation results are included to illustrate the superiority of the proposed method.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deterministic maximum likelihood method for direction-of-arrival estimation of strictly noncircular signals\",\"authors\":\"Yunmei Shi, X. Mao, Mingyang Cao, Yongtan Liu\",\"doi\":\"10.1109/ICASSP.2016.7472240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a noncircular deterministic maximum likelihood (NC-DML) estimator for direction-of-arrival estimation of strictly NC signals is devised. Unlike the conventional DML solution for arbitrary signals, the NC-DML exploits the NC properties of the sources by reconstructing the parameter set, significantly decreasing the number of parameters to be considered. For computing the NC-DML, we present a novel NC alternating projection (NC-AP) approach. The NC-AP solution is carried out based on an augmented virtual array structure. Moreover, it also takes the impact of the initial phase shift of the NC signals into account. Simulation results are included to illustrate the superiority of the proposed method.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文设计了一种用于严格NC信号到达方向估计的非圆确定性极大似然估计器。与传统的任意信号的DML解决方案不同,NC-DML通过重建参数集来利用源的NC特性,大大减少了需要考虑的参数数量。为了计算NC- dml,我们提出了一种新的NC交替投影(NC- ap)方法。NC-AP解决方案是基于增强虚拟阵列结构实现的。此外,它还考虑了NC信号初始相移的影响。仿真结果说明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deterministic maximum likelihood method for direction-of-arrival estimation of strictly noncircular signals
In this paper, a noncircular deterministic maximum likelihood (NC-DML) estimator for direction-of-arrival estimation of strictly NC signals is devised. Unlike the conventional DML solution for arbitrary signals, the NC-DML exploits the NC properties of the sources by reconstructing the parameter set, significantly decreasing the number of parameters to be considered. For computing the NC-DML, we present a novel NC alternating projection (NC-AP) approach. The NC-AP solution is carried out based on an augmented virtual array structure. Moreover, it also takes the impact of the initial phase shift of the NC signals into account. Simulation results are included to illustrate the superiority of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1