Anastasios Petropoulos, Vassilis Siakoulis, Konstantinos P. Panousis, T. Christophides, S. Chatzis
{"title":"动态资产负债表压力测试的深度学习方法","authors":"Anastasios Petropoulos, Vassilis Siakoulis, Konstantinos P. Panousis, T. Christophides, S. Chatzis","doi":"10.1145/3533271.3561656","DOIUrl":null,"url":null,"abstract":"In the aftermath of the financial crisis, supervisory authorities have considerably altered the mode of operation of financial stress testing. Despite these efforts, significant concerns and extensive criticism have been raised by market participants regarding the considered unrealistic methodological assumptions and simplifications. Current stress testing methodologies attempt to simulate the risks underlying a financial institution’s balance sheet by using several satellite models. This renders their integration a really challenging task, leading to significant estimation errors. Moreover, advanced statistical techniques that could potentially capture the non-linear nature of adverse shocks are still ignored. This work aims to address these criticisms and shortcomings by proposing a novel approach based on recent advances in Deep Learning towards a principled method for Dynamic Balance Sheet Stress Testing. Experimental results on a newly collected financial/supervisory dataset, provide strong empirical evidence that our paradigm significantly outperforms traditional approaches; thus, it is capable of more accurately and efficiently simulating real world scenarios.","PeriodicalId":134888,"journal":{"name":"Proceedings of the Third ACM International Conference on AI in Finance","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Deep Learning Approach for Dynamic Balance Sheet Stress Testing\",\"authors\":\"Anastasios Petropoulos, Vassilis Siakoulis, Konstantinos P. Panousis, T. Christophides, S. Chatzis\",\"doi\":\"10.1145/3533271.3561656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the aftermath of the financial crisis, supervisory authorities have considerably altered the mode of operation of financial stress testing. Despite these efforts, significant concerns and extensive criticism have been raised by market participants regarding the considered unrealistic methodological assumptions and simplifications. Current stress testing methodologies attempt to simulate the risks underlying a financial institution’s balance sheet by using several satellite models. This renders their integration a really challenging task, leading to significant estimation errors. Moreover, advanced statistical techniques that could potentially capture the non-linear nature of adverse shocks are still ignored. This work aims to address these criticisms and shortcomings by proposing a novel approach based on recent advances in Deep Learning towards a principled method for Dynamic Balance Sheet Stress Testing. Experimental results on a newly collected financial/supervisory dataset, provide strong empirical evidence that our paradigm significantly outperforms traditional approaches; thus, it is capable of more accurately and efficiently simulating real world scenarios.\",\"PeriodicalId\":134888,\"journal\":{\"name\":\"Proceedings of the Third ACM International Conference on AI in Finance\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third ACM International Conference on AI in Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3533271.3561656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533271.3561656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Deep Learning Approach for Dynamic Balance Sheet Stress Testing
In the aftermath of the financial crisis, supervisory authorities have considerably altered the mode of operation of financial stress testing. Despite these efforts, significant concerns and extensive criticism have been raised by market participants regarding the considered unrealistic methodological assumptions and simplifications. Current stress testing methodologies attempt to simulate the risks underlying a financial institution’s balance sheet by using several satellite models. This renders their integration a really challenging task, leading to significant estimation errors. Moreover, advanced statistical techniques that could potentially capture the non-linear nature of adverse shocks are still ignored. This work aims to address these criticisms and shortcomings by proposing a novel approach based on recent advances in Deep Learning towards a principled method for Dynamic Balance Sheet Stress Testing. Experimental results on a newly collected financial/supervisory dataset, provide strong empirical evidence that our paradigm significantly outperforms traditional approaches; thus, it is capable of more accurately and efficiently simulating real world scenarios.