动画多维缩放以可视化n维数据集

C. Bentley, M. Ward
{"title":"动画多维缩放以可视化n维数据集","authors":"C. Bentley, M. Ward","doi":"10.1109/INFVIS.1996.559223","DOIUrl":null,"url":null,"abstract":"Many techniques have been developed for visualizing multivariate (multidimensional) data. Most, if not all, are limited by the number of dimensions which can be effectively displayed. Multidimensional scaling (MDS) is an iterative non-linear technique for projecting n-D data down to a lower number of dimensions. This work presents extensions to MDS that enhance visualization of high-dimensional data sets. These extensions include animation, stochastic perturbation, and flow visualization techniques.","PeriodicalId":153504,"journal":{"name":"Proceedings IEEE Symposium on Information Visualization '96","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Animating multidimensional scaling to visualize N-dimensional data sets\",\"authors\":\"C. Bentley, M. Ward\",\"doi\":\"10.1109/INFVIS.1996.559223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many techniques have been developed for visualizing multivariate (multidimensional) data. Most, if not all, are limited by the number of dimensions which can be effectively displayed. Multidimensional scaling (MDS) is an iterative non-linear technique for projecting n-D data down to a lower number of dimensions. This work presents extensions to MDS that enhance visualization of high-dimensional data sets. These extensions include animation, stochastic perturbation, and flow visualization techniques.\",\"PeriodicalId\":153504,\"journal\":{\"name\":\"Proceedings IEEE Symposium on Information Visualization '96\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Symposium on Information Visualization '96\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFVIS.1996.559223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Symposium on Information Visualization '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFVIS.1996.559223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

已经开发了许多用于可视化多变量(多维)数据的技术。大多数(如果不是全部的话)都受到可以有效显示的维度数量的限制。多维缩放(MDS)是一种迭代非线性技术,用于将n-D数据投影到较低的维数。这项工作提出了MDS的扩展,增强了高维数据集的可视化。这些扩展包括动画、随机扰动和流可视化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Animating multidimensional scaling to visualize N-dimensional data sets
Many techniques have been developed for visualizing multivariate (multidimensional) data. Most, if not all, are limited by the number of dimensions which can be effectively displayed. Multidimensional scaling (MDS) is an iterative non-linear technique for projecting n-D data down to a lower number of dimensions. This work presents extensions to MDS that enhance visualization of high-dimensional data sets. These extensions include animation, stochastic perturbation, and flow visualization techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Techniques for non-linear magnification transformations Interactive visualization of multiway tables FINESSE: a financial information spreadsheet Data characterization for automatically visualizing heterogeneous information Towards rich information landscapes for visualising structured Web spaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1