通过概率分组标记实现有效的源和路径验证

Bo Wu, Ke Xu, Qi Li, Zhuotao Liu, Yih-Chun Hu, M. Reed, Meng Shen, F. Yang
{"title":"通过概率分组标记实现有效的源和路径验证","authors":"Bo Wu, Ke Xu, Qi Li, Zhuotao Liu, Yih-Chun Hu, M. Reed, Meng Shen, F. Yang","doi":"10.1109/IWQoS.2018.8624169","DOIUrl":null,"url":null,"abstract":"The Internet lacks verification of source authenticity and path compliance between the planned packet delivery paths and the real delivery paths, which allows attackers to construct attacks like source spoofing and traffic hijacking attacks. Thus, it is essential to enable source and path verification in networks to detect forwarding anomalies and ensure correct packet delivery. However, most of the existing security mechanisms can only capture anomalies but are unable to locate the detected anomalies. Besides, they incur significant computation and communication overhead, which exacerbates the packet delivery performance. In this paper, we propose a high-efficient packet forwarding verification mechanism called PPV for networks, which verifies packet source and their forwarding paths in real time. PPV enables probabilistic packet marking in routers instead of verifying all packets. Thus, it can efficiently identify forwarding anomalies by verifying markings. Moreover, it localizes packet forwarding anomalies, e.g., malicious routers, by reconstructing packet forwarding paths based on the packet markings. We implement PPV prototype in Click routers and commodity servers, and conducts real experiments in a real testbed built upon the prototype. The experimental results demonstrate the efficiency and performance of PPV. In particular, PPV significantly improves the throughput and the goodput of forwarding verification, and achieves around 2 times and 3 times improvement compared with the-state-of-art OPT scheme, respectively.","PeriodicalId":222290,"journal":{"name":"2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Enabling Efficient Source and Path Verification via Probabilistic Packet Marking\",\"authors\":\"Bo Wu, Ke Xu, Qi Li, Zhuotao Liu, Yih-Chun Hu, M. Reed, Meng Shen, F. Yang\",\"doi\":\"10.1109/IWQoS.2018.8624169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet lacks verification of source authenticity and path compliance between the planned packet delivery paths and the real delivery paths, which allows attackers to construct attacks like source spoofing and traffic hijacking attacks. Thus, it is essential to enable source and path verification in networks to detect forwarding anomalies and ensure correct packet delivery. However, most of the existing security mechanisms can only capture anomalies but are unable to locate the detected anomalies. Besides, they incur significant computation and communication overhead, which exacerbates the packet delivery performance. In this paper, we propose a high-efficient packet forwarding verification mechanism called PPV for networks, which verifies packet source and their forwarding paths in real time. PPV enables probabilistic packet marking in routers instead of verifying all packets. Thus, it can efficiently identify forwarding anomalies by verifying markings. Moreover, it localizes packet forwarding anomalies, e.g., malicious routers, by reconstructing packet forwarding paths based on the packet markings. We implement PPV prototype in Click routers and commodity servers, and conducts real experiments in a real testbed built upon the prototype. The experimental results demonstrate the efficiency and performance of PPV. In particular, PPV significantly improves the throughput and the goodput of forwarding verification, and achieves around 2 times and 3 times improvement compared with the-state-of-art OPT scheme, respectively.\",\"PeriodicalId\":222290,\"journal\":{\"name\":\"2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWQoS.2018.8624169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2018.8624169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

由于Internet缺乏对规划的报文传递路径与实际传输路径之间的源真实性和路径遵从性的验证,使得攻击者可以构造源欺骗、流量劫持等攻击。因此,在网络中启用源路径验证功能,能够及时发现转发异常,保证报文的正确发送。然而,大多数现有的安全机制只能捕获异常,而不能定位检测到的异常。此外,它们还会产生大量的计算和通信开销,从而降低数据包的传输性能。本文提出了一种高效的网络报文转发验证机制PPV,可以实时验证报文的来源和转发路径。PPV在路由器中启用概率标记数据包,而不是对所有数据包进行验证。因此,它可以通过验证标记有效地识别转发异常。此外,它通过基于数据包标记重构数据包转发路径来定位数据包转发异常,例如恶意路由器。我们在Click路由器和商品服务器上实现了PPV原型,并在基于原型的真实测试平台上进行了实际实验。实验结果证明了PPV的效率和性能。特别是,PPV显著提高了转发验证的吞吐量和good - put,与目前最先进的OPT方案相比,分别提高了2倍和3倍左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enabling Efficient Source and Path Verification via Probabilistic Packet Marking
The Internet lacks verification of source authenticity and path compliance between the planned packet delivery paths and the real delivery paths, which allows attackers to construct attacks like source spoofing and traffic hijacking attacks. Thus, it is essential to enable source and path verification in networks to detect forwarding anomalies and ensure correct packet delivery. However, most of the existing security mechanisms can only capture anomalies but are unable to locate the detected anomalies. Besides, they incur significant computation and communication overhead, which exacerbates the packet delivery performance. In this paper, we propose a high-efficient packet forwarding verification mechanism called PPV for networks, which verifies packet source and their forwarding paths in real time. PPV enables probabilistic packet marking in routers instead of verifying all packets. Thus, it can efficiently identify forwarding anomalies by verifying markings. Moreover, it localizes packet forwarding anomalies, e.g., malicious routers, by reconstructing packet forwarding paths based on the packet markings. We implement PPV prototype in Click routers and commodity servers, and conducts real experiments in a real testbed built upon the prototype. The experimental results demonstrate the efficiency and performance of PPV. In particular, PPV significantly improves the throughput and the goodput of forwarding verification, and achieves around 2 times and 3 times improvement compared with the-state-of-art OPT scheme, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Welcome from General Chair Back How Would you Like Your Packets Delivered? An SDN-Enabled Open Platform for QoS Routing Byte Segment Neural Network for Network Traffic Classification Enabling Privacy-Preserving Header Matching for Outsourced Middleboxes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1