机电一体化领域技术债务传染度量与优先排序方法

Fandi Bi, Birgit Vogel-Heuser, Fengmin Du, Nils Hanich, Ennuri Cho
{"title":"机电一体化领域技术债务传染度量与优先排序方法","authors":"Fandi Bi, Birgit Vogel-Heuser, Fengmin Du, Nils Hanich, Ennuri Cho","doi":"10.1109/TechDebt59074.2023.00012","DOIUrl":null,"url":null,"abstract":"Underlying and undiscovered technical debt (TD) that burdens the system and makes future changes more costly or impossible poses significant risks to mechatronic systems. Multi-disciplinary collaboration and cooperation lead to interdisciplinary interfaces and new life cycle phases that cause greater ripple effects to the TD distribution. When quantifying TD contagiousness in interdisciplinary engineering, only a few metrics, methods, or tools prove applicable. In this work, we propose a method containing two key metrics to quantify TD contagiousness across product life cycles and disciplines. Furthermore, we suggest a matrix multiplication method to quantify the adverse impact on each discipline and the system. By applying the methods to the data of three comparable companies in the industrial automation domain, the results enable us to measure and prioritize the TD incidents’ contagiousness. This method provides a first step towards the systematic quantification of TD in the interdisciplinary environment and provides metrics to compare systems based on objective factors.","PeriodicalId":131882,"journal":{"name":"2023 ACM/IEEE International Conference on Technical Debt (TechDebt)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical Debt Contagiousness Metrics for Measurement and Prioritization in Mechatronics\",\"authors\":\"Fandi Bi, Birgit Vogel-Heuser, Fengmin Du, Nils Hanich, Ennuri Cho\",\"doi\":\"10.1109/TechDebt59074.2023.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underlying and undiscovered technical debt (TD) that burdens the system and makes future changes more costly or impossible poses significant risks to mechatronic systems. Multi-disciplinary collaboration and cooperation lead to interdisciplinary interfaces and new life cycle phases that cause greater ripple effects to the TD distribution. When quantifying TD contagiousness in interdisciplinary engineering, only a few metrics, methods, or tools prove applicable. In this work, we propose a method containing two key metrics to quantify TD contagiousness across product life cycles and disciplines. Furthermore, we suggest a matrix multiplication method to quantify the adverse impact on each discipline and the system. By applying the methods to the data of three comparable companies in the industrial automation domain, the results enable us to measure and prioritize the TD incidents’ contagiousness. This method provides a first step towards the systematic quantification of TD in the interdisciplinary environment and provides metrics to compare systems based on objective factors.\",\"PeriodicalId\":131882,\"journal\":{\"name\":\"2023 ACM/IEEE International Conference on Technical Debt (TechDebt)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 ACM/IEEE International Conference on Technical Debt (TechDebt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TechDebt59074.2023.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 ACM/IEEE International Conference on Technical Debt (TechDebt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TechDebt59074.2023.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

潜在的和未发现的技术债务(TD)给系统带来负担,使未来的更改成本更高或不可能,这对机电系统构成了重大风险。多学科协作和合作导致了跨学科的界面和新的生命周期阶段,这对TD分布产生了更大的连锁反应。当量化跨学科工程中的TD传染性时,只有少数指标、方法或工具被证明是适用的。在这项工作中,我们提出了一种包含两个关键指标的方法来量化跨产品生命周期和学科的TD传染性。此外,我们建议采用矩阵乘法方法来量化对每个学科和系统的不利影响。通过将方法应用于工业自动化领域三家可比公司的数据,结果使我们能够衡量和优先考虑TD事件的传染性。该方法为跨学科环境中系统量化技术开发迈出了第一步,并提供了基于客观因素的系统比较指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Technical Debt Contagiousness Metrics for Measurement and Prioritization in Mechatronics
Underlying and undiscovered technical debt (TD) that burdens the system and makes future changes more costly or impossible poses significant risks to mechatronic systems. Multi-disciplinary collaboration and cooperation lead to interdisciplinary interfaces and new life cycle phases that cause greater ripple effects to the TD distribution. When quantifying TD contagiousness in interdisciplinary engineering, only a few metrics, methods, or tools prove applicable. In this work, we propose a method containing two key metrics to quantify TD contagiousness across product life cycles and disciplines. Furthermore, we suggest a matrix multiplication method to quantify the adverse impact on each discipline and the system. By applying the methods to the data of three comparable companies in the industrial automation domain, the results enable us to measure and prioritize the TD incidents’ contagiousness. This method provides a first step towards the systematic quantification of TD in the interdisciplinary environment and provides metrics to compare systems based on objective factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Debt Contagiousness Metrics for Measurement and Prioritization in Mechatronics Identifying Code Changes for Architecture Decay via a Metric Forest Structure How to introduce TD Management into a Software Development Process – A Practical Approach Technical Debt Classification in Issue Trackers using Natural Language Processing based on Transformers Towards identifying and minimizing customer-facing documentation debt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1