{"title":"基于跨计算连续体的液体函数的自平衡架构","authors":"Josef Spillner","doi":"10.1145/3492323.3495589","DOIUrl":null,"url":null,"abstract":"Scalable application development is highly influenced by two major trends - serverless computing and continuum computing. These trends have had little intersection, as most application architectures, even when following a microservices or function-based approach, are built around rather monolithic Function-as-a-Service engines that do not span continuums. Functions are thus separated code-wise but not infrastructure-wise, as they continue to run on the same single platform they have been deployed to. Moreover, developing and deploying distributed applications remains non-trivial and is a hurdle for enhancing the capabilities of mobile and sensing domains. To overcome this limitation, the concept of self-balancing architectures is introduced in which liquid functions traverse cloud and edge/fog platforms in a continuum as needed, represented by the abstract notion of pressure relief valves based on resource capacities, function execution durations and optimisation preferences. With CoRFu, a reference implementation of a continuum-wide distributed Function-as-a-Service engine is introduced and combined with a dynamic function offloading framework. The implementation is validated with a sensor data inference and regression application.","PeriodicalId":440884,"journal":{"name":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion","volume":"53 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Self-balancing architectures based on liquid functions across computing continuums\",\"authors\":\"Josef Spillner\",\"doi\":\"10.1145/3492323.3495589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scalable application development is highly influenced by two major trends - serverless computing and continuum computing. These trends have had little intersection, as most application architectures, even when following a microservices or function-based approach, are built around rather monolithic Function-as-a-Service engines that do not span continuums. Functions are thus separated code-wise but not infrastructure-wise, as they continue to run on the same single platform they have been deployed to. Moreover, developing and deploying distributed applications remains non-trivial and is a hurdle for enhancing the capabilities of mobile and sensing domains. To overcome this limitation, the concept of self-balancing architectures is introduced in which liquid functions traverse cloud and edge/fog platforms in a continuum as needed, represented by the abstract notion of pressure relief valves based on resource capacities, function execution durations and optimisation preferences. With CoRFu, a reference implementation of a continuum-wide distributed Function-as-a-Service engine is introduced and combined with a dynamic function offloading framework. The implementation is validated with a sensor data inference and regression application.\",\"PeriodicalId\":440884,\"journal\":{\"name\":\"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion\",\"volume\":\"53 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3492323.3495589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3492323.3495589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-balancing architectures based on liquid functions across computing continuums
Scalable application development is highly influenced by two major trends - serverless computing and continuum computing. These trends have had little intersection, as most application architectures, even when following a microservices or function-based approach, are built around rather monolithic Function-as-a-Service engines that do not span continuums. Functions are thus separated code-wise but not infrastructure-wise, as they continue to run on the same single platform they have been deployed to. Moreover, developing and deploying distributed applications remains non-trivial and is a hurdle for enhancing the capabilities of mobile and sensing domains. To overcome this limitation, the concept of self-balancing architectures is introduced in which liquid functions traverse cloud and edge/fog platforms in a continuum as needed, represented by the abstract notion of pressure relief valves based on resource capacities, function execution durations and optimisation preferences. With CoRFu, a reference implementation of a continuum-wide distributed Function-as-a-Service engine is introduced and combined with a dynamic function offloading framework. The implementation is validated with a sensor data inference and regression application.