桥梁健康监测的多传感器数据配准

Yun Liu, Ling Zhao
{"title":"桥梁健康监测的多传感器数据配准","authors":"Yun Liu, Ling Zhao","doi":"10.1109/CCIS.2011.6045039","DOIUrl":null,"url":null,"abstract":"Aimed at the problem of credibility and accuracy exiting in multi-sensor data for bridge health monitoring, this paper presents a model based on two-dimensional data processing. To make reliability of the measurements, first asynchronous data are equalized by the least square algorithm, and through the geometric coordinate transformation algorithm, measurements will be placed in the same space-time coordinates system. To improve accuracy of the measurements, Kalman filter is applied to reduce the system error after the data registration. The simulation results show that the methods significantly improve the credibility and accuracy of data in multi-sensor networks for bridge health monitoring.","PeriodicalId":128504,"journal":{"name":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-sensor data registration for bridge health monitoring\",\"authors\":\"Yun Liu, Ling Zhao\",\"doi\":\"10.1109/CCIS.2011.6045039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aimed at the problem of credibility and accuracy exiting in multi-sensor data for bridge health monitoring, this paper presents a model based on two-dimensional data processing. To make reliability of the measurements, first asynchronous data are equalized by the least square algorithm, and through the geometric coordinate transformation algorithm, measurements will be placed in the same space-time coordinates system. To improve accuracy of the measurements, Kalman filter is applied to reduce the system error after the data registration. The simulation results show that the methods significantly improve the credibility and accuracy of data in multi-sensor networks for bridge health monitoring.\",\"PeriodicalId\":128504,\"journal\":{\"name\":\"2011 IEEE International Conference on Cloud Computing and Intelligence Systems\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Cloud Computing and Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS.2011.6045039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2011.6045039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对桥梁健康监测中多传感器数据存在的可信度和准确性问题,提出了一种基于二维数据处理的桥梁健康监测模型。为了保证测量的可靠性,首先采用最小二乘算法对异步数据进行均衡,并通过几何坐标变换算法将测量值置于同一时空坐标系中。为了提高测量精度,在数据配准后采用卡尔曼滤波减小系统误差。仿真结果表明,该方法显著提高了多传感器网络桥梁健康监测数据的可信度和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-sensor data registration for bridge health monitoring
Aimed at the problem of credibility and accuracy exiting in multi-sensor data for bridge health monitoring, this paper presents a model based on two-dimensional data processing. To make reliability of the measurements, first asynchronous data are equalized by the least square algorithm, and through the geometric coordinate transformation algorithm, measurements will be placed in the same space-time coordinates system. To improve accuracy of the measurements, Kalman filter is applied to reduce the system error after the data registration. The simulation results show that the methods significantly improve the credibility and accuracy of data in multi-sensor networks for bridge health monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dynamic and integrated load-balancing scheduling algorithm for Cloud datacenters A CPU-GPU hybrid computing framework for real-time clothing animation The communication of CAN bus used in synchronization control of multi-motor based on DSP An improved dynamic provable data possession model Ensuring the data integrity in cloud data storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1