基材起伏和机械压缩对表面起皱形貌演化的综合影响

Xiaoli Zhao, W. An, Jiuchun Yan, Liqin Wang
{"title":"基材起伏和机械压缩对表面起皱形貌演化的综合影响","authors":"Xiaoli Zhao, W. An, Jiuchun Yan, Liqin Wang","doi":"10.1109/3M-NANO.2013.6737446","DOIUrl":null,"url":null,"abstract":"Controlled surface wrinkling could provide ordered and hierarchical structures in micro- and nano-meter scale. Here combined influence of out-of-plane compressive stress and in-plane substrate relief in Au/PDMS bilayer system was experimentally investigated to explore morphological evolution of surface wrinkling. Compared with single influence from out-of-plane compression or in-plane relief, the combined effect mainly reflected in two aspects: edge effect and rearrangement effect. Edge effect applied morphological change on the compressed fields near the edges, but patterns almost restored to the original shape after stress relaxation. Rearrangement effect made relaxed patterns on the rectangular convex regions to rearrange and led to the failure of shape memory effect. The results demonstrated that the combined effect could partly rearrange the original structures, which would be utilized to fabricate the complicated structures.","PeriodicalId":120368,"journal":{"name":"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined influence of substrate relief and mechanical compression on topographical evolution of surface wrinkling\",\"authors\":\"Xiaoli Zhao, W. An, Jiuchun Yan, Liqin Wang\",\"doi\":\"10.1109/3M-NANO.2013.6737446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlled surface wrinkling could provide ordered and hierarchical structures in micro- and nano-meter scale. Here combined influence of out-of-plane compressive stress and in-plane substrate relief in Au/PDMS bilayer system was experimentally investigated to explore morphological evolution of surface wrinkling. Compared with single influence from out-of-plane compression or in-plane relief, the combined effect mainly reflected in two aspects: edge effect and rearrangement effect. Edge effect applied morphological change on the compressed fields near the edges, but patterns almost restored to the original shape after stress relaxation. Rearrangement effect made relaxed patterns on the rectangular convex regions to rearrange and led to the failure of shape memory effect. The results demonstrated that the combined effect could partly rearrange the original structures, which would be utilized to fabricate the complicated structures.\",\"PeriodicalId\":120368,\"journal\":{\"name\":\"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2013.6737446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2013.6737446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

控制表面起皱可以在微纳米尺度上提供有序的层次结构。本文通过实验研究了Au/PDMS双层体系中面外压应力和面内基底起伏对表面起皱的影响,探讨了表面起皱的形态演变。与面外压缩或面内起伏的单一影响相比,复合影响主要体现在边缘效应和重排效应两个方面。边缘效应使边缘附近的压缩场发生形态变化,但应力松弛后图案几乎恢复到原始形状。重排效应使矩形凸区域上的松弛图案发生重排,导致形状记忆效应失效。结果表明,复合效应可使原结构部分重新排列,可用于制造复杂结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combined influence of substrate relief and mechanical compression on topographical evolution of surface wrinkling
Controlled surface wrinkling could provide ordered and hierarchical structures in micro- and nano-meter scale. Here combined influence of out-of-plane compressive stress and in-plane substrate relief in Au/PDMS bilayer system was experimentally investigated to explore morphological evolution of surface wrinkling. Compared with single influence from out-of-plane compression or in-plane relief, the combined effect mainly reflected in two aspects: edge effect and rearrangement effect. Edge effect applied morphological change on the compressed fields near the edges, but patterns almost restored to the original shape after stress relaxation. Rearrangement effect made relaxed patterns on the rectangular convex regions to rearrange and led to the failure of shape memory effect. The results demonstrated that the combined effect could partly rearrange the original structures, which would be utilized to fabricate the complicated structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on composite autofocus algorithm for detection system of pipeline robot Ionic current investigation in silicon nanochannels with molecular dynamics simulations Fabrication of a single CuO nanowire-based gas sensor working at room temperature Improving photoelectric conversion efficiency of DSSC using ZnO/ZnP composite nanorods The design and new controller of a 1-DOF precision positioning platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1