高成岩非均质动压碳酸盐岩油藏三维模型质量诊断与改善方法

M. I. Susanto, C. Sellar, David Rafael Contreras Perez
{"title":"高成岩非均质动压碳酸盐岩油藏三维模型质量诊断与改善方法","authors":"M. I. Susanto, C. Sellar, David Rafael Contreras Perez","doi":"10.2118/196656-ms","DOIUrl":null,"url":null,"abstract":"\n This paper presents a diagnostic workflow to understand and implement rock and fluid modeling in a diagenetically heterogeneous and hydrodynamically pressured Middle East carbonate field. The workflow allows interactive field data integration, provides guidance for reservoir property distribution and fluid contact generation in order to improve reserves and forecasting estimation. The workflow is useful to a reservoir modeler in QA/QC role and in this case it proves particularly applicable in an organization with constrained resources during the farm-in process. The workflow runs on numerical methods within the static model to avoid database discrepancy during the diagnostic process. Using the core (CCAL, SCAL), log and pressure database, the geoscientist can assess subsurface modeling outputs from the simplest to more complex deterministic scenarios. The process aims to minimize the discrepancy between data input and model output while continuously honoring the data, maintaining realistic correlations (e.g. between static permeability and water saturation) and respecting inherent uncertainty.\n Using a data-rich Middle East carbonate reservoir, the pre- and post-diagnostic comparison of 3D modeled reservoir properties to the input data are demonstrated. Diagnostic steps have helped to understand potential subsurface scenarios and thus minimize the discrepancy post exercise. The value of the workflow is its ability to pinpoint the key uncertainties in rock and fluid modeling from the field’s vast dataset in a shorter diagnostic time. The application of the workflow in this carbonate reservoir case study increases the importance of geological and property driven rock type classification and its 3D distribution in matching the water saturation profile. This proved particularly challenging in this case study due to the field’s compartmentalization - fluid contact scenario.","PeriodicalId":354509,"journal":{"name":"Day 3 Thu, September 19, 2019","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Approach to Diagnose and Improve 3D Reservoir Model Quality in a Highly Diagenetic Deterogeneous and Dynamic Pressure Carbonate Field Case Study\",\"authors\":\"M. I. Susanto, C. Sellar, David Rafael Contreras Perez\",\"doi\":\"10.2118/196656-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents a diagnostic workflow to understand and implement rock and fluid modeling in a diagenetically heterogeneous and hydrodynamically pressured Middle East carbonate field. The workflow allows interactive field data integration, provides guidance for reservoir property distribution and fluid contact generation in order to improve reserves and forecasting estimation. The workflow is useful to a reservoir modeler in QA/QC role and in this case it proves particularly applicable in an organization with constrained resources during the farm-in process. The workflow runs on numerical methods within the static model to avoid database discrepancy during the diagnostic process. Using the core (CCAL, SCAL), log and pressure database, the geoscientist can assess subsurface modeling outputs from the simplest to more complex deterministic scenarios. The process aims to minimize the discrepancy between data input and model output while continuously honoring the data, maintaining realistic correlations (e.g. between static permeability and water saturation) and respecting inherent uncertainty.\\n Using a data-rich Middle East carbonate reservoir, the pre- and post-diagnostic comparison of 3D modeled reservoir properties to the input data are demonstrated. Diagnostic steps have helped to understand potential subsurface scenarios and thus minimize the discrepancy post exercise. The value of the workflow is its ability to pinpoint the key uncertainties in rock and fluid modeling from the field’s vast dataset in a shorter diagnostic time. The application of the workflow in this carbonate reservoir case study increases the importance of geological and property driven rock type classification and its 3D distribution in matching the water saturation profile. This proved particularly challenging in this case study due to the field’s compartmentalization - fluid contact scenario.\",\"PeriodicalId\":354509,\"journal\":{\"name\":\"Day 3 Thu, September 19, 2019\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, September 19, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/196656-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 19, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196656-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种诊断工作流程,用于理解和实施中东碳酸盐岩成岩非均质和流体动力压力油藏的岩石和流体建模。该工作流程允许交互式现场数据集成,为储层物性分布和流体接触生成提供指导,以提高储量和预测估计。工作流对于QA/QC角色的油藏建模人员非常有用,在这种情况下,它被证明特别适用于在入场过程中资源受限的组织。工作流运行在静态模型内的数值方法上,以避免在诊断过程中出现数据库差异。利用岩心(CCAL、SCAL)、测井和压力数据库,地球科学家可以评估从最简单到更复杂的确定性情景的地下建模输出。该过程旨在最小化数据输入和模型输出之间的差异,同时不断尊重数据,保持现实的相关性(例如静态渗透率和含水饱和度之间的相关性)并尊重固有的不确定性。利用一个数据丰富的中东碳酸盐岩储层,将三维建模储层属性与输入数据进行了诊断前和诊断后的比较。诊断步骤有助于了解潜在的地下情况,从而最大限度地减少作业后的差异。该工作流程的价值在于,它能够在更短的诊断时间内,从油田庞大的数据集中,精确定位岩石和流体建模中的关键不确定性。该工作流程在碳酸盐岩储层案例研究中的应用,增加了地质和物性驱动的岩石类型分类及其三维分布在匹配含水饱和度剖面中的重要性。在本案例研究中,由于油田的隔区化-流体接触情况,这尤其具有挑战性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Approach to Diagnose and Improve 3D Reservoir Model Quality in a Highly Diagenetic Deterogeneous and Dynamic Pressure Carbonate Field Case Study
This paper presents a diagnostic workflow to understand and implement rock and fluid modeling in a diagenetically heterogeneous and hydrodynamically pressured Middle East carbonate field. The workflow allows interactive field data integration, provides guidance for reservoir property distribution and fluid contact generation in order to improve reserves and forecasting estimation. The workflow is useful to a reservoir modeler in QA/QC role and in this case it proves particularly applicable in an organization with constrained resources during the farm-in process. The workflow runs on numerical methods within the static model to avoid database discrepancy during the diagnostic process. Using the core (CCAL, SCAL), log and pressure database, the geoscientist can assess subsurface modeling outputs from the simplest to more complex deterministic scenarios. The process aims to minimize the discrepancy between data input and model output while continuously honoring the data, maintaining realistic correlations (e.g. between static permeability and water saturation) and respecting inherent uncertainty. Using a data-rich Middle East carbonate reservoir, the pre- and post-diagnostic comparison of 3D modeled reservoir properties to the input data are demonstrated. Diagnostic steps have helped to understand potential subsurface scenarios and thus minimize the discrepancy post exercise. The value of the workflow is its ability to pinpoint the key uncertainties in rock and fluid modeling from the field’s vast dataset in a shorter diagnostic time. The application of the workflow in this carbonate reservoir case study increases the importance of geological and property driven rock type classification and its 3D distribution in matching the water saturation profile. This proved particularly challenging in this case study due to the field’s compartmentalization - fluid contact scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Middle East Karst Carbonate: An Integrated Workflow For Prediction Of Karst Enhancement Distribution Potential Applicability of Miscible N2 Flooding in High-Temperature Abu Dhabi Reservoir Modelling Dispersed Chemical Droplets Injection in the Gas Stream for EOR Applications A Collaborative Approach to Risk Assessment and Mitigation of Pre-Production Cross-Flow for a Multi-Billion Dollar Sour Field Development Project in the Sultanate of Oman: A Case Study Multidisciplinary Approach for Unconventional Reservoirs Characterisation by Integrating Wireline Openhole Logging Techniques – Electric and Sonic to Formation Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1