{"title":"基于时空曲面的步态分析","authors":"Sourabh A. Niyogi, E. Adelson","doi":"10.1109/MNRAO.1994.346253","DOIUrl":null,"url":null,"abstract":"Human motions generate characteristic spatiotemporal patterns. We have developed a set of techniques for analyzing the patterns generated by people walking across the field of view. After change detection, the XYT pattern can be fit with a smooth spatiotemporal surface. This surface is approximately periodic, reflecting the periodicity of the gait. The surface can be expressed as a combination of a standard parameterized surface-the canonical walk-and a deviation surface that is specific to the individual walk.<<ETX>>","PeriodicalId":336218,"journal":{"name":"Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"164","resultStr":"{\"title\":\"Analyzing gait with spatiotemporal surfaces\",\"authors\":\"Sourabh A. Niyogi, E. Adelson\",\"doi\":\"10.1109/MNRAO.1994.346253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human motions generate characteristic spatiotemporal patterns. We have developed a set of techniques for analyzing the patterns generated by people walking across the field of view. After change detection, the XYT pattern can be fit with a smooth spatiotemporal surface. This surface is approximately periodic, reflecting the periodicity of the gait. The surface can be expressed as a combination of a standard parameterized surface-the canonical walk-and a deviation surface that is specific to the individual walk.<<ETX>>\",\"PeriodicalId\":336218,\"journal\":{\"name\":\"Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"164\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MNRAO.1994.346253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNRAO.1994.346253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human motions generate characteristic spatiotemporal patterns. We have developed a set of techniques for analyzing the patterns generated by people walking across the field of view. After change detection, the XYT pattern can be fit with a smooth spatiotemporal surface. This surface is approximately periodic, reflecting the periodicity of the gait. The surface can be expressed as a combination of a standard parameterized surface-the canonical walk-and a deviation surface that is specific to the individual walk.<>