M. Sakhuja, L. K. Verma, H. Yang, C. S. Bhatia, A. Danner
{"title":"太阳能组件全向传输倾斜纳米结构的制备","authors":"M. Sakhuja, L. K. Verma, H. Yang, C. S. Bhatia, A. Danner","doi":"10.1109/PVSC.2011.6186105","DOIUrl":null,"url":null,"abstract":"Incident irradiation on solar modules experiences reflection at the outermost air-glass interface which reduces overall power conversion efficiency, especially when the sun is near the horizon in fixed-mount modules without active tracking. Here, we present a non-lithographic fabrication process for creating vertical and tilted nanostructures directly in the packaging glass of solar modules. We investigate how the angle of the glass nanostructures affects the omnidirectional reception of solar insolation in an outdoor environment, and find up to a 0.5% increase in maximum module efficiency for vertical nanostructures at normal incidence. An increase in the omnidirectional reception of incoming light up to 70° is also observed for nanostructures tilted at an angle of 80° with respect to the glass substrate.","PeriodicalId":373149,"journal":{"name":"2011 37th IEEE Photovoltaic Specialists Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of tilted nanostructures for omnidirectional transmission in solar modules\",\"authors\":\"M. Sakhuja, L. K. Verma, H. Yang, C. S. Bhatia, A. Danner\",\"doi\":\"10.1109/PVSC.2011.6186105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incident irradiation on solar modules experiences reflection at the outermost air-glass interface which reduces overall power conversion efficiency, especially when the sun is near the horizon in fixed-mount modules without active tracking. Here, we present a non-lithographic fabrication process for creating vertical and tilted nanostructures directly in the packaging glass of solar modules. We investigate how the angle of the glass nanostructures affects the omnidirectional reception of solar insolation in an outdoor environment, and find up to a 0.5% increase in maximum module efficiency for vertical nanostructures at normal incidence. An increase in the omnidirectional reception of incoming light up to 70° is also observed for nanostructures tilted at an angle of 80° with respect to the glass substrate.\",\"PeriodicalId\":373149,\"journal\":{\"name\":\"2011 37th IEEE Photovoltaic Specialists Conference\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 37th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2011.6186105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 37th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2011.6186105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication of tilted nanostructures for omnidirectional transmission in solar modules
Incident irradiation on solar modules experiences reflection at the outermost air-glass interface which reduces overall power conversion efficiency, especially when the sun is near the horizon in fixed-mount modules without active tracking. Here, we present a non-lithographic fabrication process for creating vertical and tilted nanostructures directly in the packaging glass of solar modules. We investigate how the angle of the glass nanostructures affects the omnidirectional reception of solar insolation in an outdoor environment, and find up to a 0.5% increase in maximum module efficiency for vertical nanostructures at normal incidence. An increase in the omnidirectional reception of incoming light up to 70° is also observed for nanostructures tilted at an angle of 80° with respect to the glass substrate.