利用高阶累积特征和四种分类器对多用户啁啾调制信号进行分类

S. El-Khamy, H. Elsayed, M. Rizk
{"title":"利用高阶累积特征和四种分类器对多用户啁啾调制信号进行分类","authors":"S. El-Khamy, H. Elsayed, M. Rizk","doi":"10.1109/NRSC.2011.5873611","DOIUrl":null,"url":null,"abstract":"Automatic Digital signal type classification (ADSTC) has many important applications in both of the civilian and military domains. Most of the proposed classifiers can only recognize a few types of digital signals. This paper presents a novel technique that deals with the classification of multi-user chirp modulation signals. In this technique, a combination of higher order moments and higher order cumulants (up to eighth) are proposed as the effective features and different types of classifiers are used. Simulation results show that the proposed technique is able to classify the different types of chirp signals in additive white Gaussian noise (AWGN) channels with high accuracy and the neural network classifier (NN) outperforms other classifiers, namely, maximum likelihood classifier (ML), k nearest neighbor classifier (KNN), support vector machine classifier (SVM).","PeriodicalId":438638,"journal":{"name":"2011 28th National Radio Science Conference (NRSC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Classification of multi-user chirp modulation signals using higher order cumulant features and four types of classifiers\",\"authors\":\"S. El-Khamy, H. Elsayed, M. Rizk\",\"doi\":\"10.1109/NRSC.2011.5873611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic Digital signal type classification (ADSTC) has many important applications in both of the civilian and military domains. Most of the proposed classifiers can only recognize a few types of digital signals. This paper presents a novel technique that deals with the classification of multi-user chirp modulation signals. In this technique, a combination of higher order moments and higher order cumulants (up to eighth) are proposed as the effective features and different types of classifiers are used. Simulation results show that the proposed technique is able to classify the different types of chirp signals in additive white Gaussian noise (AWGN) channels with high accuracy and the neural network classifier (NN) outperforms other classifiers, namely, maximum likelihood classifier (ML), k nearest neighbor classifier (KNN), support vector machine classifier (SVM).\",\"PeriodicalId\":438638,\"journal\":{\"name\":\"2011 28th National Radio Science Conference (NRSC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 28th National Radio Science Conference (NRSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRSC.2011.5873611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 28th National Radio Science Conference (NRSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.2011.5873611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

自动数字信号类型分类(ADSTC)在民用和军事领域都有重要的应用。大多数提出的分类器只能识别几种类型的数字信号。提出了一种处理多用户啁啾调制信号分类的新技术。在该技术中,提出了高阶矩和高阶累积量(最高8阶)的组合作为有效特征,并使用了不同类型的分类器。仿真结果表明,该方法能够对加性高斯白噪声(AWGN)信道中不同类型的啁啾信号进行高精度分类,神经网络分类器(NN)优于最大似然分类器(ML)、k近邻分类器(KNN)、支持向量机分类器(SVM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of multi-user chirp modulation signals using higher order cumulant features and four types of classifiers
Automatic Digital signal type classification (ADSTC) has many important applications in both of the civilian and military domains. Most of the proposed classifiers can only recognize a few types of digital signals. This paper presents a novel technique that deals with the classification of multi-user chirp modulation signals. In this technique, a combination of higher order moments and higher order cumulants (up to eighth) are proposed as the effective features and different types of classifiers are used. Simulation results show that the proposed technique is able to classify the different types of chirp signals in additive white Gaussian noise (AWGN) channels with high accuracy and the neural network classifier (NN) outperforms other classifiers, namely, maximum likelihood classifier (ML), k nearest neighbor classifier (KNN), support vector machine classifier (SVM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Downlink interference mitigation for two-tier LTE femtocell networks FPGA implementation of LMS adaptive filter Octafilar helical antenna for handheld UHF RFID reader Split ring resonator-based miniaturized antennas Proactive transmit opportunity detection in cognitive radio networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1