高分辨率图像的分布式训练:一种域和空间分解方法

A. Tsaris, Jacob D. Hinkle, D. Lunga, P. Dias
{"title":"高分辨率图像的分布式训练:一种域和空间分解方法","authors":"A. Tsaris, Jacob D. Hinkle, D. Lunga, P. Dias","doi":"10.2172/1827010","DOIUrl":null,"url":null,"abstract":"In this work we developed two Pytorch libraries using the PyTorch RPC interface for distributed deep learning approaches on high resolution images. The spatial decomposition library allows for distributed training on very large images, which otherwise wouldn’t be possible on a single GPU. The domain parallelism library allows for distributed training across multiple domain unlabeled data, by leveraging the domain separation architecture. Both of those libraries where tested on the Summit supercomputer at Oak Ridge National Laboratory at a moderate scale.","PeriodicalId":119942,"journal":{"name":"2021 IEEE/ACM Redefining Scalability for Diversely Heterogeneous Architectures Workshop (RSDHA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributed Training for High Resolution Images: A Domain and Spatial Decomposition Approach\",\"authors\":\"A. Tsaris, Jacob D. Hinkle, D. Lunga, P. Dias\",\"doi\":\"10.2172/1827010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we developed two Pytorch libraries using the PyTorch RPC interface for distributed deep learning approaches on high resolution images. The spatial decomposition library allows for distributed training on very large images, which otherwise wouldn’t be possible on a single GPU. The domain parallelism library allows for distributed training across multiple domain unlabeled data, by leveraging the domain separation architecture. Both of those libraries where tested on the Summit supercomputer at Oak Ridge National Laboratory at a moderate scale.\",\"PeriodicalId\":119942,\"journal\":{\"name\":\"2021 IEEE/ACM Redefining Scalability for Diversely Heterogeneous Architectures Workshop (RSDHA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM Redefining Scalability for Diversely Heterogeneous Architectures Workshop (RSDHA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2172/1827010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Redefining Scalability for Diversely Heterogeneous Architectures Workshop (RSDHA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/1827010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们使用Pytorch RPC接口开发了两个Pytorch库,用于高分辨率图像的分布式深度学习方法。空间分解库允许在非常大的图像上进行分布式训练,否则在单个GPU上是不可能的。通过利用领域分离体系结构,领域并行库允许跨多个领域未标记数据进行分布式训练。这两个库都在橡树岭国家实验室的Summit超级计算机上进行了中等规模的测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Training for High Resolution Images: A Domain and Spatial Decomposition Approach
In this work we developed two Pytorch libraries using the PyTorch RPC interface for distributed deep learning approaches on high resolution images. The spatial decomposition library allows for distributed training on very large images, which otherwise wouldn’t be possible on a single GPU. The domain parallelism library allows for distributed training across multiple domain unlabeled data, by leveraging the domain separation architecture. Both of those libraries where tested on the Summit supercomputer at Oak Ridge National Laboratory at a moderate scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing LLC-Memory Traffic between CPU and GPU Architectures Platform Agnostic Streaming Data Application Performance Models ELIχR: Eliminating Computation Redundancy in CNN-Based Video Processing [Copyright notice] Energy Efficient Task Graph Execution Using Compute Unit Masking in GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1