指标决定推荐算法吗?

Elica Campochiaro, Riccardo Casatta, P. Cremonesi, R. Turrin
{"title":"指标决定推荐算法吗?","authors":"Elica Campochiaro, Riccardo Casatta, P. Cremonesi, R. Turrin","doi":"10.1109/WAINA.2009.127","DOIUrl":null,"url":null,"abstract":"Recommender systems are used to suggest customized products to users. Most recommender algorithms create collaborative models by taking advantage of web user profiles. In the last years, in the area of recommender systems, the Netflix contest has been very attractive for the researchers. However, many recent papers on recommender systems present results evaluated with the methodology used in the Netflix contest in domains where the objectives are different from the contest (e.g., top-N recommendation task). In this paper we do not propose new recommender algorithms but, rather, we compare different aspects of the official Netflix contest methodology based on RMSE and holdout with methodologies based on k-fold and classification accuracy metrics.We show, with case studies, that different evaluation methodologies lead to totally contrasting conclusions about the quality of recommendations.","PeriodicalId":159465,"journal":{"name":"2009 International Conference on Advanced Information Networking and Applications Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Do Metrics Make Recommender Algorithms?\",\"authors\":\"Elica Campochiaro, Riccardo Casatta, P. Cremonesi, R. Turrin\",\"doi\":\"10.1109/WAINA.2009.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems are used to suggest customized products to users. Most recommender algorithms create collaborative models by taking advantage of web user profiles. In the last years, in the area of recommender systems, the Netflix contest has been very attractive for the researchers. However, many recent papers on recommender systems present results evaluated with the methodology used in the Netflix contest in domains where the objectives are different from the contest (e.g., top-N recommendation task). In this paper we do not propose new recommender algorithms but, rather, we compare different aspects of the official Netflix contest methodology based on RMSE and holdout with methodologies based on k-fold and classification accuracy metrics.We show, with case studies, that different evaluation methodologies lead to totally contrasting conclusions about the quality of recommendations.\",\"PeriodicalId\":159465,\"journal\":{\"name\":\"2009 International Conference on Advanced Information Networking and Applications Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Advanced Information Networking and Applications Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAINA.2009.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Advanced Information Networking and Applications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2009.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

推荐系统用于向用户推荐定制产品。大多数推荐算法通过利用网络用户档案来创建协作模型。在过去的几年里,在推荐系统领域,Netflix的竞赛对研究人员非常有吸引力。然而,最近许多关于推荐系统的论文在目标与竞赛不同的领域(例如,top-N推荐任务)中使用Netflix竞赛中使用的方法来评估结果。在本文中,我们没有提出新的推荐算法,而是比较了基于RMSE和holdout的官方Netflix竞赛方法与基于k-fold和分类精度指标的方法的不同方面。我们通过案例研究表明,不同的评估方法会导致关于推荐质量的完全不同的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Do Metrics Make Recommender Algorithms?
Recommender systems are used to suggest customized products to users. Most recommender algorithms create collaborative models by taking advantage of web user profiles. In the last years, in the area of recommender systems, the Netflix contest has been very attractive for the researchers. However, many recent papers on recommender systems present results evaluated with the methodology used in the Netflix contest in domains where the objectives are different from the contest (e.g., top-N recommendation task). In this paper we do not propose new recommender algorithms but, rather, we compare different aspects of the official Netflix contest methodology based on RMSE and holdout with methodologies based on k-fold and classification accuracy metrics.We show, with case studies, that different evaluation methodologies lead to totally contrasting conclusions about the quality of recommendations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Routing Mechanism Based on Heading Angle A Semantic Approach for Trust Information Exchange in Federation Systems Knowledge Extraction and Extrapolation Using Ancient and Modern Biomedical Literature Secure Safety Messages Broadcasting in Vehicular Network A Proposal of Tsunami Warning System Using Area Mail Disaster Information Service on Mobile Phones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1