标准计算神经科学流水线自动化的来源和再现性

David B. Stockton, A. Prinz, F. Santamaría
{"title":"标准计算神经科学流水线自动化的来源和再现性","authors":"David B. Stockton, A. Prinz, F. Santamaría","doi":"10.1145/3322790.3330592","DOIUrl":null,"url":null,"abstract":"Rapid increase in data volume, compounded by the reproducibility crisis, has led to the need to automate both experimental and computational aspects of neuroscience investigations. Automating neuroscience investigations enables an unprecedented ability to record and inspect how results were achieved. Here we review some of our recent work to integrate provenance and reproducibility measures into a tool called NeuroManager that automates a standard computational neuroscience pipeline, unifying the experiment--data--modeling--analysis cycle and allowing the scientist to focus on model evolution. Through a flexible daily workflow that leverages servers, clusters, and clouds simultaneously, NeuroManager automates manual tasks including database access, job submission, simulation scheduling, and preservation of provenance.","PeriodicalId":192842,"journal":{"name":"Proceedings of the 2nd International Workshop on Practical Reproducible Evaluation of Computer Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Provenance and Reproducibility in the Automation of a Standard Computational Neuroscience Pipeline\",\"authors\":\"David B. Stockton, A. Prinz, F. Santamaría\",\"doi\":\"10.1145/3322790.3330592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid increase in data volume, compounded by the reproducibility crisis, has led to the need to automate both experimental and computational aspects of neuroscience investigations. Automating neuroscience investigations enables an unprecedented ability to record and inspect how results were achieved. Here we review some of our recent work to integrate provenance and reproducibility measures into a tool called NeuroManager that automates a standard computational neuroscience pipeline, unifying the experiment--data--modeling--analysis cycle and allowing the scientist to focus on model evolution. Through a flexible daily workflow that leverages servers, clusters, and clouds simultaneously, NeuroManager automates manual tasks including database access, job submission, simulation scheduling, and preservation of provenance.\",\"PeriodicalId\":192842,\"journal\":{\"name\":\"Proceedings of the 2nd International Workshop on Practical Reproducible Evaluation of Computer Systems\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Workshop on Practical Reproducible Evaluation of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3322790.3330592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Workshop on Practical Reproducible Evaluation of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3322790.3330592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据量的快速增长,再加上可重复性危机,导致神经科学研究的实验和计算方面都需要自动化。自动化神经科学研究使前所未有的记录和检查结果如何实现的能力。在这里,我们回顾了我们最近的一些工作,将来源和可重复性措施整合到一个名为NeuroManager的工具中,该工具可以自动化标准的计算神经科学管道,统一实验-数据-建模-分析周期,并允许科学家专注于模型进化。通过灵活的日常工作流程,同时利用服务器、集群和云,NeuroManager自动执行手动任务,包括数据库访问、作业提交、模拟调度和来源保存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Provenance and Reproducibility in the Automation of a Standard Computational Neuroscience Pipeline
Rapid increase in data volume, compounded by the reproducibility crisis, has led to the need to automate both experimental and computational aspects of neuroscience investigations. Automating neuroscience investigations enables an unprecedented ability to record and inspect how results were achieved. Here we review some of our recent work to integrate provenance and reproducibility measures into a tool called NeuroManager that automates a standard computational neuroscience pipeline, unifying the experiment--data--modeling--analysis cycle and allowing the scientist to focus on model evolution. Through a flexible daily workflow that leverages servers, clusters, and clouds simultaneously, NeuroManager automates manual tasks including database access, job submission, simulation scheduling, and preservation of provenance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reproducible Computer Network Experiments: A Case Study Using Popper Initial Thoughts on Cybersecurity And Reproducibility Provenance and Reproducibility in the Automation of a Standard Computational Neuroscience Pipeline Implementing Computational Reproducibility in the Whole Tale Environment Scientific Tests and Continuous Integration Strategies to Enhance Reproducibility in the Scientific Software Context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1