自主异常检测

Xiaowei Gu, P. Angelov
{"title":"自主异常检测","authors":"Xiaowei Gu, P. Angelov","doi":"10.1109/EAIS.2017.7954831","DOIUrl":null,"url":null,"abstract":"In this paper, a new approach for autonomous anomaly detection is introduced within the Empirical Data Analytics (EDA) framework. This approach is fully data-driven and free from thresholds. Employing the nonparametric EDA estimators, the proposed approach can autonomously detect anomalies in an objective way based on the mutual distribution and ensemble properties of the data. The proposed approach firstly identifies the potential anomalies based on two EDA criteria, and then, partitions them into shape-free, non-parametric data clouds. Finally, it identifies the anomalies in regards to each data cloud (locally). Numerical examples based on synthetic and benchmark datasets demonstrate the validity and efficiency of the proposed approach.","PeriodicalId":286312,"journal":{"name":"2017 Evolving and Adaptive Intelligent Systems (EAIS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Autonomous anomaly detection\",\"authors\":\"Xiaowei Gu, P. Angelov\",\"doi\":\"10.1109/EAIS.2017.7954831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new approach for autonomous anomaly detection is introduced within the Empirical Data Analytics (EDA) framework. This approach is fully data-driven and free from thresholds. Employing the nonparametric EDA estimators, the proposed approach can autonomously detect anomalies in an objective way based on the mutual distribution and ensemble properties of the data. The proposed approach firstly identifies the potential anomalies based on two EDA criteria, and then, partitions them into shape-free, non-parametric data clouds. Finally, it identifies the anomalies in regards to each data cloud (locally). Numerical examples based on synthetic and benchmark datasets demonstrate the validity and efficiency of the proposed approach.\",\"PeriodicalId\":286312,\"journal\":{\"name\":\"2017 Evolving and Adaptive Intelligent Systems (EAIS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Evolving and Adaptive Intelligent Systems (EAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIS.2017.7954831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2017.7954831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文在经验数据分析(EDA)框架下提出了一种自主异常检测的新方法。这种方法完全是数据驱动的,不受阈值限制。该方法利用非参数EDA估计量,基于数据的相互分布和集合特性,能够客观自主地检测异常。该方法首先基于两个EDA标准识别潜在异常,然后将其划分为无形状、无参数的数据云。最后,它识别与每个数据云(本地)相关的异常。基于综合数据集和基准数据集的数值算例验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autonomous anomaly detection
In this paper, a new approach for autonomous anomaly detection is introduced within the Empirical Data Analytics (EDA) framework. This approach is fully data-driven and free from thresholds. Employing the nonparametric EDA estimators, the proposed approach can autonomously detect anomalies in an objective way based on the mutual distribution and ensemble properties of the data. The proposed approach firstly identifies the potential anomalies based on two EDA criteria, and then, partitions them into shape-free, non-parametric data clouds. Finally, it identifies the anomalies in regards to each data cloud (locally). Numerical examples based on synthetic and benchmark datasets demonstrate the validity and efficiency of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Evolving Cloud-based Controller (RECCo) Autonomous anomaly detection Autonomous learning multi-model classifier of 0-Order (ALMMo-0) Granular evolving fuzzy robust feedback linearization Evolving Cauchy possibilistic clustering based on cosine similarity for monitoring cyber systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1