基于独立定位模型的深度神经网络判别多声源定位

Ryu Takeda, Kazunori Komatani
{"title":"基于独立定位模型的深度神经网络判别多声源定位","authors":"Ryu Takeda, Kazunori Komatani","doi":"10.1109/SLT.2016.7846325","DOIUrl":null,"url":null,"abstract":"We propose a training method for multiple sound source localization (SSL) based on deep neural networks (DNNs). Such networks function as posterior probability estimator of sound location in terms of position labels and achieve high localization correctness. Since the previous DNNs' configuration for SSL handles one-sound-source cases, it should be extended to multiple-sound-source cases to apply it to real environments. However, a naïve design causes 1) an increase in the number of labels and training data patterns and 2) a lack of label consistency across different numbers of sound sources, such as one and two-or-more-sound cases. These two problems were solved using our proposed method, which involves an independent location model for the former and an block-wise consistent labeling with ordering for the latter. Our experiments indicated that the SSL based on DNNs trained by our proposed training method out-performed a conventional SSL method by a maximum of 18 points in terms of block-level correctness.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":"{\"title\":\"Discriminative multiple sound source localization based on deep neural networks using independent location model\",\"authors\":\"Ryu Takeda, Kazunori Komatani\",\"doi\":\"10.1109/SLT.2016.7846325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a training method for multiple sound source localization (SSL) based on deep neural networks (DNNs). Such networks function as posterior probability estimator of sound location in terms of position labels and achieve high localization correctness. Since the previous DNNs' configuration for SSL handles one-sound-source cases, it should be extended to multiple-sound-source cases to apply it to real environments. However, a naïve design causes 1) an increase in the number of labels and training data patterns and 2) a lack of label consistency across different numbers of sound sources, such as one and two-or-more-sound cases. These two problems were solved using our proposed method, which involves an independent location model for the former and an block-wise consistent labeling with ordering for the latter. Our experiments indicated that the SSL based on DNNs trained by our proposed training method out-performed a conventional SSL method by a maximum of 18 points in terms of block-level correctness.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"156 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

摘要

提出了一种基于深度神经网络的多声源定位(SSL)训练方法。该网络在位置标签方面作为声音定位的后验概率估计器,具有较高的定位正确性。由于前面dnn的SSL配置处理的是单声源情况,因此应该将其扩展到多声源情况,以便将其应用于实际环境。然而,naïve的设计导致1)标签和训练数据模式的数量增加,2)不同数量的声源之间缺乏标签一致性,例如一个和两个或更多的声音案例。采用本文提出的方法解决了这两个问题,前者采用独立的位置模型,后者采用带排序的分块一致标记。我们的实验表明,基于我们提出的训练方法训练的dnn的SSL在块级正确性方面比传统SSL方法高出最多18点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discriminative multiple sound source localization based on deep neural networks using independent location model
We propose a training method for multiple sound source localization (SSL) based on deep neural networks (DNNs). Such networks function as posterior probability estimator of sound location in terms of position labels and achieve high localization correctness. Since the previous DNNs' configuration for SSL handles one-sound-source cases, it should be extended to multiple-sound-source cases to apply it to real environments. However, a naïve design causes 1) an increase in the number of labels and training data patterns and 2) a lack of label consistency across different numbers of sound sources, such as one and two-or-more-sound cases. These two problems were solved using our proposed method, which involves an independent location model for the former and an block-wise consistent labeling with ordering for the latter. Our experiments indicated that the SSL based on DNNs trained by our proposed training method out-performed a conventional SSL method by a maximum of 18 points in terms of block-level correctness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further optimisations of constant Q cepstral processing for integrated utterance and text-dependent speaker verification Learning dialogue dynamics with the method of moments A study of speech distortion conditions in real scenarios for speech processing applications Comparing speaker independent and speaker adapted classification for word prominence detection Influence of corpus size and content on the perceptual quality of a unit selection MaryTTS voice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1