使用选定的MPEG-7音频特征和mel -频率倒谱系数的环境识别

G. Muhammad, Y. Alotaibi, M. Alsulaiman, M. N. Huda
{"title":"使用选定的MPEG-7音频特征和mel -频率倒谱系数的环境识别","authors":"G. Muhammad, Y. Alotaibi, M. Alsulaiman, M. N. Huda","doi":"10.1109/ICDT.2010.10","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a system for environment recognition using selected MPEG-7 audio low level descriptors together with conventional mel-frequency cepstral coefficients (MFCC). The MPEG-7 descriptors are first ranked based on Fisher’s discriminant ratio. Then principal component analysis is applied on top ranked 30 MPEG-7 descriptors to obtain 13 features. These 13 features are appended with MFCC features to complete the feature set of the proposed system. Gaussian mixture models (GMMs) are used as classifier. The system is evaluated using ten different environment sounds. The experimental results show a significant improvement in recognition performance of the proposed system over MFCC or full MPEG-7 descriptor based systems. For example, the best performance is achieved in Restaurant environment where MFCC, full MPEG-7, and the proposed method give 90%, 94%, and 96% accuracy, respectively.","PeriodicalId":322589,"journal":{"name":"2010 Fifth International Conference on Digital Telecommunications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Environment Recognition Using Selected MPEG-7 Audio Features and Mel-Frequency Cepstral Coefficients\",\"authors\":\"G. Muhammad, Y. Alotaibi, M. Alsulaiman, M. N. Huda\",\"doi\":\"10.1109/ICDT.2010.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a system for environment recognition using selected MPEG-7 audio low level descriptors together with conventional mel-frequency cepstral coefficients (MFCC). The MPEG-7 descriptors are first ranked based on Fisher’s discriminant ratio. Then principal component analysis is applied on top ranked 30 MPEG-7 descriptors to obtain 13 features. These 13 features are appended with MFCC features to complete the feature set of the proposed system. Gaussian mixture models (GMMs) are used as classifier. The system is evaluated using ten different environment sounds. The experimental results show a significant improvement in recognition performance of the proposed system over MFCC or full MPEG-7 descriptor based systems. For example, the best performance is achieved in Restaurant environment where MFCC, full MPEG-7, and the proposed method give 90%, 94%, and 96% accuracy, respectively.\",\"PeriodicalId\":322589,\"journal\":{\"name\":\"2010 Fifth International Conference on Digital Telecommunications\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Fifth International Conference on Digital Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDT.2010.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fifth International Conference on Digital Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDT.2010.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本文提出了一种基于MPEG-7音频低电平描述符和传统的mel-frequency倒谱系数(MFCC)的环境识别系统。MPEG-7描述符首先根据Fisher判别比进行排序。然后对排名靠前的30个MPEG-7描述符进行主成分分析,得到13个特征。这13个功能与MFCC功能一起附加,以完成拟议系统的功能集。采用高斯混合模型作为分类器。该系统使用十种不同的环境声音进行评估。实验结果表明,与基于MFCC或全MPEG-7描述符的系统相比,该系统的识别性能有显著提高。例如,在餐厅环境中,MFCC、全MPEG-7和所提出的方法分别给出了90%、94%和96%的准确率,达到了最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environment Recognition Using Selected MPEG-7 Audio Features and Mel-Frequency Cepstral Coefficients
In this paper, we propose a system for environment recognition using selected MPEG-7 audio low level descriptors together with conventional mel-frequency cepstral coefficients (MFCC). The MPEG-7 descriptors are first ranked based on Fisher’s discriminant ratio. Then principal component analysis is applied on top ranked 30 MPEG-7 descriptors to obtain 13 features. These 13 features are appended with MFCC features to complete the feature set of the proposed system. Gaussian mixture models (GMMs) are used as classifier. The system is evaluated using ten different environment sounds. The experimental results show a significant improvement in recognition performance of the proposed system over MFCC or full MPEG-7 descriptor based systems. For example, the best performance is achieved in Restaurant environment where MFCC, full MPEG-7, and the proposed method give 90%, 94%, and 96% accuracy, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prefilter Bandwidth Effects in Sequential Symbol Synchronizers Based on Clock Sampling Peer-to-Peer IPTV Service Impact on Network Traffic Perceived Video Quality Estimation from Spatial and Temporal Information Contents and Network Performance Parameters in IPTV SVM-MLP-PNN Classifiers on Speech Emotion Recognition Field - A Comparative Study Architectural Aspects of C4I2SR Systems and Migration to Service Oriented Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1