A. Ambainis, K. Balodis, Aleksandrs Belovs, Troy Lee, M. Santha, Juris Smotrovs
{"title":"基于指针函数的查询复杂度分隔","authors":"A. Ambainis, K. Balodis, Aleksandrs Belovs, Troy Lee, M. Santha, Juris Smotrovs","doi":"10.1145/2897518.2897524","DOIUrl":null,"url":null,"abstract":"In 1986, Saks and Wigderson conjectured that the largest separation between deterministic and zero-error randomized query complexity for a total boolean function is given by the function f on n=2k bits defined by a complete binary tree of NAND gates of depth k, which achieves R0(f) = O(D(f)0.7537…). We show this is false by giving an example of a total boolean function f on n bits whose deterministic query complexity is Ω(n/log(n)) while its zero-error randomized query complexity is Õ(√n). We further show that the quantum query complexity of the same function is Õ(n1/4), giving the first example of a total function with a super-quadratic gap between its quantum and deterministic query complexities. We also construct a total boolean function g on n variables that has zero-error randomized query complexity Ω(n/log(n)) and bounded-error randomized query complexity R(g) = Õ(√n). This is the first super-linear separation between these two complexity measures. The exact quantum query complexity of the same function is QE(g) = Õ(√n). These functions show that the relations D(f) = O(R1(f)2) and R0(f) = Õ(R(f)2) are optimal, up to poly-logarithmic factors. Further variations of these functions give additional separations between other query complexity measures: a cubic separation between Q and R0, a 3/2-power separation between QE and R, and a 4th power separation between approximate degree and bounded-error randomized query complexity. All of these examples are variants of a function recently introduced by Goos, Pitassi, and Watson which they used to separate the unambiguous 1-certificate complexity from deterministic query complexity and to resolve the famous Clique versus Independent Set problem in communication complexity.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Separations in query complexity based on pointer functions\",\"authors\":\"A. Ambainis, K. Balodis, Aleksandrs Belovs, Troy Lee, M. Santha, Juris Smotrovs\",\"doi\":\"10.1145/2897518.2897524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1986, Saks and Wigderson conjectured that the largest separation between deterministic and zero-error randomized query complexity for a total boolean function is given by the function f on n=2k bits defined by a complete binary tree of NAND gates of depth k, which achieves R0(f) = O(D(f)0.7537…). We show this is false by giving an example of a total boolean function f on n bits whose deterministic query complexity is Ω(n/log(n)) while its zero-error randomized query complexity is Õ(√n). We further show that the quantum query complexity of the same function is Õ(n1/4), giving the first example of a total function with a super-quadratic gap between its quantum and deterministic query complexities. We also construct a total boolean function g on n variables that has zero-error randomized query complexity Ω(n/log(n)) and bounded-error randomized query complexity R(g) = Õ(√n). This is the first super-linear separation between these two complexity measures. The exact quantum query complexity of the same function is QE(g) = Õ(√n). These functions show that the relations D(f) = O(R1(f)2) and R0(f) = Õ(R(f)2) are optimal, up to poly-logarithmic factors. Further variations of these functions give additional separations between other query complexity measures: a cubic separation between Q and R0, a 3/2-power separation between QE and R, and a 4th power separation between approximate degree and bounded-error randomized query complexity. All of these examples are variants of a function recently introduced by Goos, Pitassi, and Watson which they used to separate the unambiguous 1-certificate complexity from deterministic query complexity and to resolve the famous Clique versus Independent Set problem in communication complexity.\",\"PeriodicalId\":442965,\"journal\":{\"name\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897518.2897524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897518.2897524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Separations in query complexity based on pointer functions
In 1986, Saks and Wigderson conjectured that the largest separation between deterministic and zero-error randomized query complexity for a total boolean function is given by the function f on n=2k bits defined by a complete binary tree of NAND gates of depth k, which achieves R0(f) = O(D(f)0.7537…). We show this is false by giving an example of a total boolean function f on n bits whose deterministic query complexity is Ω(n/log(n)) while its zero-error randomized query complexity is Õ(√n). We further show that the quantum query complexity of the same function is Õ(n1/4), giving the first example of a total function with a super-quadratic gap between its quantum and deterministic query complexities. We also construct a total boolean function g on n variables that has zero-error randomized query complexity Ω(n/log(n)) and bounded-error randomized query complexity R(g) = Õ(√n). This is the first super-linear separation between these two complexity measures. The exact quantum query complexity of the same function is QE(g) = Õ(√n). These functions show that the relations D(f) = O(R1(f)2) and R0(f) = Õ(R(f)2) are optimal, up to poly-logarithmic factors. Further variations of these functions give additional separations between other query complexity measures: a cubic separation between Q and R0, a 3/2-power separation between QE and R, and a 4th power separation between approximate degree and bounded-error randomized query complexity. All of these examples are variants of a function recently introduced by Goos, Pitassi, and Watson which they used to separate the unambiguous 1-certificate complexity from deterministic query complexity and to resolve the famous Clique versus Independent Set problem in communication complexity.