方矩形混合激光器相位噪声的数值模拟

Jia-Chen Liu, Yongzhen Huang, Youzeng Hao, Jiliang Wu, Ke Yang, Yuede Yang, J. Xiao
{"title":"方矩形混合激光器相位噪声的数值模拟","authors":"Jia-Chen Liu, Yongzhen Huang, Youzeng Hao, Jiliang Wu, Ke Yang, Yuede Yang, J. Xiao","doi":"10.1117/12.2603057","DOIUrl":null,"url":null,"abstract":"A numerical scheme for calculating phase noise is proposed for hybrid square-rectangular semiconductor lasers. By establishing a two-section single-mode rate equation model driven by Langevin noise sources and considering the nonlinear gain effect, we numerically studied the phase noise characteristics and linewidth of the hybrid-cavity laser. The time-varying spectra of carrier density, photon density and phase are simulated and the frequency spectra of phase noise are presented with the help of the fast Fourier transform. With the increase of the bias current, the frequency noise has an obvious downward trend and a narrower linewidth is obtained. The linewidth of the hybrid square-rectangular laser is calculated according to the phase noise at low frequency. The simulated linewidth of the hybrid-cavity semiconductor laser is 0.36 MHz at the linewidth enhancement factor of 3 when the square microcavity bias current is 20 mA and the FP cavity bias current is 100 mA.","PeriodicalId":330466,"journal":{"name":"Sixteenth National Conference on Laser Technology and Optoelectronics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of phase noise in hybrid square-rectangular lasers\",\"authors\":\"Jia-Chen Liu, Yongzhen Huang, Youzeng Hao, Jiliang Wu, Ke Yang, Yuede Yang, J. Xiao\",\"doi\":\"10.1117/12.2603057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical scheme for calculating phase noise is proposed for hybrid square-rectangular semiconductor lasers. By establishing a two-section single-mode rate equation model driven by Langevin noise sources and considering the nonlinear gain effect, we numerically studied the phase noise characteristics and linewidth of the hybrid-cavity laser. The time-varying spectra of carrier density, photon density and phase are simulated and the frequency spectra of phase noise are presented with the help of the fast Fourier transform. With the increase of the bias current, the frequency noise has an obvious downward trend and a narrower linewidth is obtained. The linewidth of the hybrid square-rectangular laser is calculated according to the phase noise at low frequency. The simulated linewidth of the hybrid-cavity semiconductor laser is 0.36 MHz at the linewidth enhancement factor of 3 when the square microcavity bias current is 20 mA and the FP cavity bias current is 100 mA.\",\"PeriodicalId\":330466,\"journal\":{\"name\":\"Sixteenth National Conference on Laser Technology and Optoelectronics\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixteenth National Conference on Laser Technology and Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2603057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixteenth National Conference on Laser Technology and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2603057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种计算方矩形混合半导体激光器相位噪声的数值格式。通过建立朗之万噪声源驱动下的两段式单模速率方程模型,考虑非线性增益效应,对混合腔激光器的相位噪声特性和线宽进行了数值研究。利用快速傅立叶变换模拟了载流子密度、光子密度和相位的时变谱,得到了相位噪声的频谱。随着偏置电流的增大,频率噪声有明显的下降趋势,线宽变窄。根据低频相位噪声计算了矩形矩形混合激光器的线宽。当方形微腔偏置电流为20 mA, FP腔偏置电流为100 mA时,在线宽增强因子为3的情况下,混合腔半导体激光器的模拟线宽为0.36 MHz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulation of phase noise in hybrid square-rectangular lasers
A numerical scheme for calculating phase noise is proposed for hybrid square-rectangular semiconductor lasers. By establishing a two-section single-mode rate equation model driven by Langevin noise sources and considering the nonlinear gain effect, we numerically studied the phase noise characteristics and linewidth of the hybrid-cavity laser. The time-varying spectra of carrier density, photon density and phase are simulated and the frequency spectra of phase noise are presented with the help of the fast Fourier transform. With the increase of the bias current, the frequency noise has an obvious downward trend and a narrower linewidth is obtained. The linewidth of the hybrid square-rectangular laser is calculated according to the phase noise at low frequency. The simulated linewidth of the hybrid-cavity semiconductor laser is 0.36 MHz at the linewidth enhancement factor of 3 when the square microcavity bias current is 20 mA and the FP cavity bias current is 100 mA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical digital-to-analog conversion based on weighted fiber coupler Influence of atmospheric turbulence on tracking performance of LIDAR and validation of vacuum experiment Novel four-step phase shifting algorithm based on the products of sines and cosines Femtosecond-laser-inscribed Fiber Bragg grating array for quasi-distributed high-temperature sensing Giant and tunable Goos-Hänchen shifts with a surface plasmon resonance structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1