一种用于弱小目标检测的高效频域速度滤波实现

H. L. Kennedy
{"title":"一种用于弱小目标检测的高效频域速度滤波实现","authors":"H. L. Kennedy","doi":"10.1109/DICTA.2010.16","DOIUrl":null,"url":null,"abstract":"An efficient Fourier-domain implementation of the velocity filter is presented. The Sliding Discrete Fourier Transform (SDFT) is exploited to yield a Track-Before-Detect (TBD) algorithm with a complexity that is independent of the filter integration time. As a consequence, dim targets near the noise floor of acquisition or surveillance sensors may be detected, and their states estimated, at a relatively low computational cost. The performance of the method is demonstrated using real sensor data. When processing the acquired data, the SDFT implementation is approximately 3 times faster than the equivalent Fast Fourier Transform (FFT) implementation and 16 times faster than the corresponding spatiotemporal implementation.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Efficient Frequency-Domain Velocity-Filter Implementation for Dim Target Detection\",\"authors\":\"H. L. Kennedy\",\"doi\":\"10.1109/DICTA.2010.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient Fourier-domain implementation of the velocity filter is presented. The Sliding Discrete Fourier Transform (SDFT) is exploited to yield a Track-Before-Detect (TBD) algorithm with a complexity that is independent of the filter integration time. As a consequence, dim targets near the noise floor of acquisition or surveillance sensors may be detected, and their states estimated, at a relatively low computational cost. The performance of the method is demonstrated using real sensor data. When processing the acquired data, the SDFT implementation is approximately 3 times faster than the equivalent Fast Fourier Transform (FFT) implementation and 16 times faster than the corresponding spatiotemporal implementation.\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"167 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

给出了一种有效的速度滤波器的傅里叶域实现。利用滑动离散傅里叶变换(SDFT)产生一种复杂度与滤波器积分时间无关的检测前跟踪(TBD)算法。因此,可以以相对较低的计算成本检测到捕获或监视传感器噪声底附近的微弱目标,并估计其状态。通过实际传感器数据验证了该方法的有效性。在处理获取的数据时,SDFT实现比等效的快速傅里叶变换(FFT)实现快大约3倍,比相应的时空实现快16倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Frequency-Domain Velocity-Filter Implementation for Dim Target Detection
An efficient Fourier-domain implementation of the velocity filter is presented. The Sliding Discrete Fourier Transform (SDFT) is exploited to yield a Track-Before-Detect (TBD) algorithm with a complexity that is independent of the filter integration time. As a consequence, dim targets near the noise floor of acquisition or surveillance sensors may be detected, and their states estimated, at a relatively low computational cost. The performance of the method is demonstrated using real sensor data. When processing the acquired data, the SDFT implementation is approximately 3 times faster than the equivalent Fast Fourier Transform (FFT) implementation and 16 times faster than the corresponding spatiotemporal implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1