力矩曲线

Daniel Patel, M. Haidacher, Jean-Paul Balabanian, E. Gröller
{"title":"力矩曲线","authors":"Daniel Patel, M. Haidacher, Jean-Paul Balabanian, E. Gröller","doi":"10.1109/PACIFICVIS.2009.4906857","DOIUrl":null,"url":null,"abstract":"We define a transfer function based on the first and second statistical moments. We consider the evolution of the mean and variance with respect to a growing neighborhood around a voxel. This evolution defines a curve in 3D for which we identify important trends and project it back to 2D. The resulting 2D projection can be brushed for easy and robust classification of materials and material borders. The transfer function is applied to both CT and MR data.","PeriodicalId":133992,"journal":{"name":"2009 IEEE Pacific Visualization Symposium","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Moment curves\",\"authors\":\"Daniel Patel, M. Haidacher, Jean-Paul Balabanian, E. Gröller\",\"doi\":\"10.1109/PACIFICVIS.2009.4906857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a transfer function based on the first and second statistical moments. We consider the evolution of the mean and variance with respect to a growing neighborhood around a voxel. This evolution defines a curve in 3D for which we identify important trends and project it back to 2D. The resulting 2D projection can be brushed for easy and robust classification of materials and material borders. The transfer function is applied to both CT and MR data.\",\"PeriodicalId\":133992,\"journal\":{\"name\":\"2009 IEEE Pacific Visualization Symposium\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Pacific Visualization Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACIFICVIS.2009.4906857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Pacific Visualization Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2009.4906857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

我们定义了基于第一和第二统计矩的传递函数。我们考虑相对于一个体素周围不断增长的邻域的均值和方差的演化。这种演变在3D中定义了一条曲线,我们从中识别出重要的趋势,并将其投影回2D。生成的2D投影可以刷刷,以便对材料和材料边界进行简单而稳健的分类。传递函数应用于CT和MR数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Moment curves
We define a transfer function based on the first and second statistical moments. We consider the evolution of the mean and variance with respect to a growing neighborhood around a voxel. This evolution defines a curve in 3D for which we identify important trends and project it back to 2D. The resulting 2D projection can be brushed for easy and robust classification of materials and material borders. The transfer function is applied to both CT and MR data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Out-of-core volume rendering for time-varying fields using a space-partitioning time (SPT) tree A graph reading behavior: Geodesic-path tendency HiMap: Adaptive visualization of large-scale online social networks A self-adaptive treemap-based technique for visualizing hierarchical data in 3D Interactive feature extraction and tracking by utilizing region coherency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1