基于子计算的转换谓词抽象

Carl Christian Frederiksen, M. Hagiya
{"title":"基于子计算的转换谓词抽象","authors":"Carl Christian Frederiksen, M. Hagiya","doi":"10.2197/IPSJDC.3.380","DOIUrl":null,"url":null,"abstract":"The transition predicate abstraction framework developed by Podelski, et al. (2005) captures size relations over state transitions which can be used to show infeasibility of certain program computations. In particular, general liveness properties (i.e., properties of infinite computations) can be verified by reducing the verification problem to one of fair termination and then proving that all (infinite) fair computations are infeasible. We present an extension of the algorithm by Podelski, et al. that can be used to improve the precision of transition predicate abstraction as well as speed up analysis time for programs with well-structured control-flow. The main key is to identify sub-computations that can be evaluated independently of their context. Efficiency is then readily improved by analyzing each sub-computation in turn, thus avoiding to reanalyze the effect of a given sub-computations for different contexts. Further, precision can be improved by using stronger methods for extracting summary information about a given sub-computation. We present two versions of the sub-computation based analysis: one for a non-parallel imperative language with loops and recursive procedures, serving as an introduction, and one for the extension of the non-parallel language to a parallel language with synchronous communication via statically named channels.","PeriodicalId":432390,"journal":{"name":"Ipsj Digital Courier","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-Computation Based Transition Predicate Abstraction\",\"authors\":\"Carl Christian Frederiksen, M. Hagiya\",\"doi\":\"10.2197/IPSJDC.3.380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transition predicate abstraction framework developed by Podelski, et al. (2005) captures size relations over state transitions which can be used to show infeasibility of certain program computations. In particular, general liveness properties (i.e., properties of infinite computations) can be verified by reducing the verification problem to one of fair termination and then proving that all (infinite) fair computations are infeasible. We present an extension of the algorithm by Podelski, et al. that can be used to improve the precision of transition predicate abstraction as well as speed up analysis time for programs with well-structured control-flow. The main key is to identify sub-computations that can be evaluated independently of their context. Efficiency is then readily improved by analyzing each sub-computation in turn, thus avoiding to reanalyze the effect of a given sub-computations for different contexts. Further, precision can be improved by using stronger methods for extracting summary information about a given sub-computation. We present two versions of the sub-computation based analysis: one for a non-parallel imperative language with loops and recursive procedures, serving as an introduction, and one for the extension of the non-parallel language to a parallel language with synchronous communication via statically named channels.\",\"PeriodicalId\":432390,\"journal\":{\"name\":\"Ipsj Digital Courier\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ipsj Digital Courier\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/IPSJDC.3.380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ipsj Digital Courier","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJDC.3.380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Podelski等人(2005)开发的转换谓词抽象框架捕获了状态转换上的大小关系,可用于显示某些程序计算的不可行性。特别是,通过将验证问题简化为公平终止问题,然后证明所有(无限)公平计算都是不可行的,可以验证一般的活性(即无限计算的性质)。我们提出了Podelski等人对该算法的扩展,该算法可用于提高转换谓词抽象的精度,并加快具有结构良好的控制流的程序的分析时间。关键是确定可以独立于上下文进行评估的子计算。然后,通过依次分析每个子计算,可以很容易地提高效率,从而避免为不同的上下文重新分析给定子计算的效果。此外,通过使用更强的方法提取给定子计算的摘要信息,可以提高精度。我们提出了基于子计算的分析的两个版本:一个用于具有循环和递归过程的非并行命令式语言,作为介绍;另一个用于将非并行语言扩展为具有通过静态命名通道进行同步通信的并行语言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sub-Computation Based Transition Predicate Abstraction
The transition predicate abstraction framework developed by Podelski, et al. (2005) captures size relations over state transitions which can be used to show infeasibility of certain program computations. In particular, general liveness properties (i.e., properties of infinite computations) can be verified by reducing the verification problem to one of fair termination and then proving that all (infinite) fair computations are infeasible. We present an extension of the algorithm by Podelski, et al. that can be used to improve the precision of transition predicate abstraction as well as speed up analysis time for programs with well-structured control-flow. The main key is to identify sub-computations that can be evaluated independently of their context. Efficiency is then readily improved by analyzing each sub-computation in turn, thus avoiding to reanalyze the effect of a given sub-computations for different contexts. Further, precision can be improved by using stronger methods for extracting summary information about a given sub-computation. We present two versions of the sub-computation based analysis: one for a non-parallel imperative language with loops and recursive procedures, serving as an introduction, and one for the extension of the non-parallel language to a parallel language with synchronous communication via statically named channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distributed-Processing System for Accelerating Biological Research Using Data-Staging A Type System for Dynamic Delimited Continuations A Combination Method of the Tanimoto Coefficient and Proximity Measure of Random Forest for Compound Activity Prediction Peer-to-Peer Multimedia Streaming with Guaranteed QoS for Future Real-time Applications A Benchmark Tool for Network I/O Management Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1