GPU数据库查询性能的综合实证研究

Young-Kyoon Suh, Jun Young An, Byungchul Tak, Gap-Joo Na
{"title":"GPU数据库查询性能的综合实证研究","authors":"Young-Kyoon Suh, Jun Young An, Byungchul Tak, Gap-Joo Na","doi":"10.1145/3508024","DOIUrl":null,"url":null,"abstract":"In recent years, GPU database management systems (DBMSes) have rapidly become popular largely due to their remarkable acceleration capability obtained through extreme parallelism in query evaluations. However, there has been relatively little study on the characteristics of these GPU DBMSes for a better understanding of their query performance in various contexts. Also, little has been known about what the potential factors could be that affect the query processing jobs within the GPU DBMSes. To fill this gap, we have conducted a study to identify such factors and to propose a structural causal model, including key factors and their relationships, to explicate the variances of the query execution times on the GPU DBMSes. We have also established a set of hypotheses drawn from the model that explained the performance characteristics. To test the model, we have designed and run comprehensive experiments and conducted in-depth statistical analyses on the obtained empirical data. As a result, our model achieves about 77% amount of variance explained on the query time and indicates that reducing kernel time and data transfer time are the key factors to improve the query time. Also, our results show that the studied systems should resolve several concerns such as bounded processing within GPU memory, lack of rich query evaluation operators, limited scalability, and GPU under-utilization.","PeriodicalId":426760,"journal":{"name":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Comprehensive Empirical Study of Query Performance Across GPU DBMSes\",\"authors\":\"Young-Kyoon Suh, Jun Young An, Byungchul Tak, Gap-Joo Na\",\"doi\":\"10.1145/3508024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, GPU database management systems (DBMSes) have rapidly become popular largely due to their remarkable acceleration capability obtained through extreme parallelism in query evaluations. However, there has been relatively little study on the characteristics of these GPU DBMSes for a better understanding of their query performance in various contexts. Also, little has been known about what the potential factors could be that affect the query processing jobs within the GPU DBMSes. To fill this gap, we have conducted a study to identify such factors and to propose a structural causal model, including key factors and their relationships, to explicate the variances of the query execution times on the GPU DBMSes. We have also established a set of hypotheses drawn from the model that explained the performance characteristics. To test the model, we have designed and run comprehensive experiments and conducted in-depth statistical analyses on the obtained empirical data. As a result, our model achieves about 77% amount of variance explained on the query time and indicates that reducing kernel time and data transfer time are the key factors to improve the query time. Also, our results show that the studied systems should resolve several concerns such as bounded processing within GPU memory, lack of rich query evaluation operators, limited scalability, and GPU under-utilization.\",\"PeriodicalId\":426760,\"journal\":{\"name\":\"Proceedings of the ACM on Measurement and Analysis of Computing Systems\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Measurement and Analysis of Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,GPU数据库管理系统(dbms)迅速流行起来,很大程度上是因为它们通过查询计算的极端并行性获得了显著的加速能力。然而,为了更好地理解它们在各种上下文中的查询性能,对这些GPU dbms的特征进行的研究相对较少。此外,对于影响GPU dbms中的查询处理作业的潜在因素知之甚少。为了填补这一空白,我们进行了一项研究,以确定这些因素,并提出一个结构性因果模型,包括关键因素及其关系,以解释GPU dbms上查询执行时间的差异。我们还从模型中建立了一组解释性能特征的假设。为了验证模型,我们设计并进行了全面的实验,并对获得的经验数据进行了深入的统计分析。结果,我们的模型在查询时间上实现了大约77%的方差解释,并表明减少内核时间和数据传输时间是改善查询时间的关键因素。此外,我们的研究结果表明,所研究的系统应该解决几个问题,如GPU内存内的有限处理,缺乏丰富的查询求值运算符,有限的可扩展性和GPU利用率不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comprehensive Empirical Study of Query Performance Across GPU DBMSes
In recent years, GPU database management systems (DBMSes) have rapidly become popular largely due to their remarkable acceleration capability obtained through extreme parallelism in query evaluations. However, there has been relatively little study on the characteristics of these GPU DBMSes for a better understanding of their query performance in various contexts. Also, little has been known about what the potential factors could be that affect the query processing jobs within the GPU DBMSes. To fill this gap, we have conducted a study to identify such factors and to propose a structural causal model, including key factors and their relationships, to explicate the variances of the query execution times on the GPU DBMSes. We have also established a set of hypotheses drawn from the model that explained the performance characteristics. To test the model, we have designed and run comprehensive experiments and conducted in-depth statistical analyses on the obtained empirical data. As a result, our model achieves about 77% amount of variance explained on the query time and indicates that reducing kernel time and data transfer time are the key factors to improve the query time. Also, our results show that the studied systems should resolve several concerns such as bounded processing within GPU memory, lack of rich query evaluation operators, limited scalability, and GPU under-utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
A Large Scale Study and Classification of VirusTotal Reports on Phishing and Malware URLs POMACS V7, N2, June 2023 Editorial SplitRPC: A {Control + Data} Path Splitting RPC Stack for ML Inference Serving Smash: Flexible, Fast, and Resource-efficient Placement and Lookup of Distributed Storage Towards Accelerating Data Intensive Application's Shuffle Process Using SmartNICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1