ZnSnP2用于太阳能转换和环境友好型光伏器件的基本材料性质

N. Neeraj, Pravesh Pravesh, S. Pal, Sarita Kumari, A. Verma
{"title":"ZnSnP2用于太阳能转换和环境友好型光伏器件的基本材料性质","authors":"N. Neeraj, Pravesh Pravesh, S. Pal, Sarita Kumari, A. Verma","doi":"10.37394/23201.2020.19.6","DOIUrl":null,"url":null,"abstract":"Ab initio calculations have been performed by the full potential linearized augmented plane wave (FP-LAPW) method as implemented in the WIEN2K code within the density functional theory to obtain the fundamental physical properties of ZnSnP2 in the body centered tetragonal (BCT) phase. The six elastic constants (C11, C12, C13, C33, C44 and C66) and mechanical parameters have been presented and compared with the available experimental data. The thermal properties within the quasi-harmonic approximation is used to give an accurate description of the pressure-temperature dependence of the thermal-expansion coefficient, bulk modulus, specific heat, Debye temperature, entropy Grüneisen parameters. Based on the semi-empirical relation, we have determined the hardness of the material; which attributed to different covalent bonding strengths. Further, ZnSnP2 solar cell devices have been modeled; device physics and performance parameters have analyzed for ZnTe and CdS buffer layers. Simulation results for ZnSnP2 thin layer solar cell show the maximum efficiency (22.9%) with ZnTe as the buffer layer. Most of the investigated parameters are reported for the first time.","PeriodicalId":376260,"journal":{"name":"WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fundamental Materialistic Properties of ZnSnP2 for Solar Energy Conversion and Environmental Friendly Photovoltaic Devices\",\"authors\":\"N. Neeraj, Pravesh Pravesh, S. Pal, Sarita Kumari, A. Verma\",\"doi\":\"10.37394/23201.2020.19.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ab initio calculations have been performed by the full potential linearized augmented plane wave (FP-LAPW) method as implemented in the WIEN2K code within the density functional theory to obtain the fundamental physical properties of ZnSnP2 in the body centered tetragonal (BCT) phase. The six elastic constants (C11, C12, C13, C33, C44 and C66) and mechanical parameters have been presented and compared with the available experimental data. The thermal properties within the quasi-harmonic approximation is used to give an accurate description of the pressure-temperature dependence of the thermal-expansion coefficient, bulk modulus, specific heat, Debye temperature, entropy Grüneisen parameters. Based on the semi-empirical relation, we have determined the hardness of the material; which attributed to different covalent bonding strengths. Further, ZnSnP2 solar cell devices have been modeled; device physics and performance parameters have analyzed for ZnTe and CdS buffer layers. Simulation results for ZnSnP2 thin layer solar cell show the maximum efficiency (22.9%) with ZnTe as the buffer layer. Most of the investigated parameters are reported for the first time.\",\"PeriodicalId\":376260,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23201.2020.19.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23201.2020.19.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在密度泛函理论中,利用WIEN2K代码中的全势线性化增广平面波(FP-LAPW)方法进行从头计算,获得了ZnSnP2在体心四边形(BCT)相中的基本物理性质。给出了6个弹性常数(C11、C12、C13、C33、C44和C66)和力学参数,并与已有的实验数据进行了比较。利用准调和近似内的热学性质,准确地描述了热膨胀系数、体积模量、比热、德拜温度、熵格尼森参数与压力-温度的关系。根据半经验关系,确定了材料的硬度;这归因于不同的共价键强度。此外,ZnSnP2太阳能电池器件已经建模;分析了ZnTe和CdS缓冲层的器件物理和性能参数。模拟结果表明,以ZnTe为缓冲层的ZnSnP2薄层太阳能电池效率最高(22.9%)。大多数研究参数为首次报道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fundamental Materialistic Properties of ZnSnP2 for Solar Energy Conversion and Environmental Friendly Photovoltaic Devices
Ab initio calculations have been performed by the full potential linearized augmented plane wave (FP-LAPW) method as implemented in the WIEN2K code within the density functional theory to obtain the fundamental physical properties of ZnSnP2 in the body centered tetragonal (BCT) phase. The six elastic constants (C11, C12, C13, C33, C44 and C66) and mechanical parameters have been presented and compared with the available experimental data. The thermal properties within the quasi-harmonic approximation is used to give an accurate description of the pressure-temperature dependence of the thermal-expansion coefficient, bulk modulus, specific heat, Debye temperature, entropy Grüneisen parameters. Based on the semi-empirical relation, we have determined the hardness of the material; which attributed to different covalent bonding strengths. Further, ZnSnP2 solar cell devices have been modeled; device physics and performance parameters have analyzed for ZnTe and CdS buffer layers. Simulation results for ZnSnP2 thin layer solar cell show the maximum efficiency (22.9%) with ZnTe as the buffer layer. Most of the investigated parameters are reported for the first time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
PCB Image Defects Detection by Artificial Neural Networks and Resistance Analysis Analysis and Mitigation of Harmonics for a Wastewater Treatment Plant Electrical System Analysis and Mitigation of Harmonics for a Wastewater Treatment Plant Electrical System Design of Low Power SAR ADC with Novel Regenerative Comparator Design and Construction of a Density-Controlled Traffic Light System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1