浮动式海上风力机空气动力学的修正自由尾迹涡环模型

Jing Dong, A. Viré, Simao Ferreira, Zhang-rui Li, G. V. Bussel
{"title":"浮动式海上风力机空气动力学的修正自由尾迹涡环模型","authors":"Jing Dong, A. Viré, Simao Ferreira, Zhang-rui Li, G. V. Bussel","doi":"10.1115/iowtc2019-7610","DOIUrl":null,"url":null,"abstract":"\n A modified free-wake vortex ring model is proposed to compute the dynamics of a floating horizontal-axis wind turbine. The model is divided into two parts. The near wake model uses a blade bound vortex model and trailed vortex model, which is developed based on vortex filament method. By contrast, the far wake model is based on the vortex ring method. This is a good compromise between accuracy and computational cost. In this work, the model is used to assess the influence of floating platform motions on the performance of a horizontal-axis wind turbine rotor. The results are validated on the 5MW NREL rotor and compared with other vortex models for the same rotor subjected to different platform motions. It was found that the result from the proposed method are more reliable than the results from BEM theory especially at small angles of attack in the region of low wind speeds, on the one hand, and high wind speeds with blade pitch motions, on the other hand.","PeriodicalId":131294,"journal":{"name":"ASME 2019 2nd International Offshore Wind Technical Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified Free-Wake Vortex Ring Model for the Aerodynamics of Floating Offshore Wind Turbines\",\"authors\":\"Jing Dong, A. Viré, Simao Ferreira, Zhang-rui Li, G. V. Bussel\",\"doi\":\"10.1115/iowtc2019-7610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A modified free-wake vortex ring model is proposed to compute the dynamics of a floating horizontal-axis wind turbine. The model is divided into two parts. The near wake model uses a blade bound vortex model and trailed vortex model, which is developed based on vortex filament method. By contrast, the far wake model is based on the vortex ring method. This is a good compromise between accuracy and computational cost. In this work, the model is used to assess the influence of floating platform motions on the performance of a horizontal-axis wind turbine rotor. The results are validated on the 5MW NREL rotor and compared with other vortex models for the same rotor subjected to different platform motions. It was found that the result from the proposed method are more reliable than the results from BEM theory especially at small angles of attack in the region of low wind speeds, on the one hand, and high wind speeds with blade pitch motions, on the other hand.\",\"PeriodicalId\":131294,\"journal\":{\"name\":\"ASME 2019 2nd International Offshore Wind Technical Conference\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 2nd International Offshore Wind Technical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/iowtc2019-7610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 2nd International Offshore Wind Technical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/iowtc2019-7610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种改进的自由尾迹涡环模型来计算浮动水平轴风力机的动力学。该模型分为两部分。近尾迹模型采用叶片束缚涡模型和基于涡丝法建立的尾涡模型。而远尾迹模型则是基于涡环法。这是精度和计算成本之间的一个很好的折衷。在这项工作中,该模型用于评估浮动平台运动对水平轴风力发电机转子性能的影响。在5MW NREL转子上进行了验证,并与不同平台运动下相同转子的其他涡模型进行了比较。结果表明,该方法的计算结果比边界元理论的计算结果更可靠,特别是在低风速区域的小迎角和高风速区域的桨距运动下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Modified Free-Wake Vortex Ring Model for the Aerodynamics of Floating Offshore Wind Turbines
A modified free-wake vortex ring model is proposed to compute the dynamics of a floating horizontal-axis wind turbine. The model is divided into two parts. The near wake model uses a blade bound vortex model and trailed vortex model, which is developed based on vortex filament method. By contrast, the far wake model is based on the vortex ring method. This is a good compromise between accuracy and computational cost. In this work, the model is used to assess the influence of floating platform motions on the performance of a horizontal-axis wind turbine rotor. The results are validated on the 5MW NREL rotor and compared with other vortex models for the same rotor subjected to different platform motions. It was found that the result from the proposed method are more reliable than the results from BEM theory especially at small angles of attack in the region of low wind speeds, on the one hand, and high wind speeds with blade pitch motions, on the other hand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Low Specific Mass, Free Floating Wind Energy Concept up to 40 MW Effect of Nacelle Drag on the Performance of a Floating Wind Turbine Platform Assessing the Impact of Integrating Energy Storage on the Dynamic Response of a Spar-Type Floating Wind Turbine Lifting Line Free Wake Vortex Filament Method for the Evaluation of Floating Offshore Wind Turbines: First Step — Validation for Fixed Wind Turbines Substructure Flexibility and Member-Level Load Capabilities for Floating Offshore Wind Turbines in OpenFAST
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1