超导磁分离技术的现状及未来的社会需求

Tsuneo Watanabe, S. Fukui
{"title":"超导磁分离技术的现状及未来的社会需求","authors":"Tsuneo Watanabe, S. Fukui","doi":"10.2221/jcsj.55.149","DOIUrl":null,"url":null,"abstract":"Synopsis : This article reviews the current status and recent progress of magnetic separation technologies using superconducting magnets and conventional magnets. In this article, firstly, the research and development history of magnetic separation technologies is reviewed. Secondly, the main component technologies for magnetic separation, such as options for magnetic separation methods, magnet devices as magnetic-field generators, magnetic seeding methods, magnetic filters and magnetic separation methods utilizing the Magneto-Archimedes effect, are summarized. Thirdly, the contents of presentations at the CSJ and CSSJ conferences held from 2006-2018 are summarized. Based on this summary, the status quo of the research and development of magnetic separation technologies in Japan is analyzed. It is confirmed that the component technologies for magnetic separation have advanced well and many new applications of magnetic separation using superconducting magnets have been developing. It is worth noting that the magnetic separation method removing radioactive Cs from contaminated soil using a superconducting magnet has been developed. In China and Korea, the research and development of magnetic separation technologies have continued as well. Particularly in China, there is much interest in magnetic separation since the environmental pollution that has become apparent with economic development has become serious. Through the technical review in this article, it is found that recent magnetic separation technologies have advanced to the level where social implementation is possible. Sustainable Development Goals (SDGs) and promotion of sustainable economies are the tailwinds for spreading magnetic separation with superconducting technology because of contributions to the environment, materials recycling, CO 2 reduction, cost reduction and innovation.","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current Status of Magnetic Separation Using Superconducting Technology and Future Social Needs\",\"authors\":\"Tsuneo Watanabe, S. Fukui\",\"doi\":\"10.2221/jcsj.55.149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synopsis : This article reviews the current status and recent progress of magnetic separation technologies using superconducting magnets and conventional magnets. In this article, firstly, the research and development history of magnetic separation technologies is reviewed. Secondly, the main component technologies for magnetic separation, such as options for magnetic separation methods, magnet devices as magnetic-field generators, magnetic seeding methods, magnetic filters and magnetic separation methods utilizing the Magneto-Archimedes effect, are summarized. Thirdly, the contents of presentations at the CSJ and CSSJ conferences held from 2006-2018 are summarized. Based on this summary, the status quo of the research and development of magnetic separation technologies in Japan is analyzed. It is confirmed that the component technologies for magnetic separation have advanced well and many new applications of magnetic separation using superconducting magnets have been developing. It is worth noting that the magnetic separation method removing radioactive Cs from contaminated soil using a superconducting magnet has been developed. In China and Korea, the research and development of magnetic separation technologies have continued as well. Particularly in China, there is much interest in magnetic separation since the environmental pollution that has become apparent with economic development has become serious. Through the technical review in this article, it is found that recent magnetic separation technologies have advanced to the level where social implementation is possible. Sustainable Development Goals (SDGs) and promotion of sustainable economies are the tailwinds for spreading magnetic separation with superconducting technology because of contributions to the environment, materials recycling, CO 2 reduction, cost reduction and innovation.\",\"PeriodicalId\":143949,\"journal\":{\"name\":\"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2221/jcsj.55.149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2221/jcsj.55.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文综述了超导磁体和常规磁体分离技术的现状和最新进展。本文首先回顾了磁选技术的研究和发展历史。其次,综述了磁选技术的主要组成技术,如磁选方法的选择、磁场发生器等磁性器件、磁播种法、磁滤波器和利用磁阿基米德效应的磁选方法。第三,总结了2006-2018年在CSJ和CSSJ会议上的演讲内容。在此基础上,分析了日本磁选技术的研究与发展现状。研究表明,磁选组件技术取得了长足的进步,超导磁体磁选的新应用也在不断发展。值得注意的是,利用超导磁体从污染土壤中去除放射性铯的磁分离方法已经发展起来。在中国和韩国,磁分离技术的研究和开发也在继续。特别是在中国,随着经济的发展,环境污染日益严重,磁选技术引起了人们的极大兴趣。通过本文的技术回顾,发现近年来的磁选技术已经发展到可以社会实施的水平。可持续发展目标(sdg)和促进可持续经济是推广超导磁分离技术的推动力,因为它对环境、材料回收、二氧化碳减排、成本降低和创新都有贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Current Status of Magnetic Separation Using Superconducting Technology and Future Social Needs
Synopsis : This article reviews the current status and recent progress of magnetic separation technologies using superconducting magnets and conventional magnets. In this article, firstly, the research and development history of magnetic separation technologies is reviewed. Secondly, the main component technologies for magnetic separation, such as options for magnetic separation methods, magnet devices as magnetic-field generators, magnetic seeding methods, magnetic filters and magnetic separation methods utilizing the Magneto-Archimedes effect, are summarized. Thirdly, the contents of presentations at the CSJ and CSSJ conferences held from 2006-2018 are summarized. Based on this summary, the status quo of the research and development of magnetic separation technologies in Japan is analyzed. It is confirmed that the component technologies for magnetic separation have advanced well and many new applications of magnetic separation using superconducting magnets have been developing. It is worth noting that the magnetic separation method removing radioactive Cs from contaminated soil using a superconducting magnet has been developed. In China and Korea, the research and development of magnetic separation technologies have continued as well. Particularly in China, there is much interest in magnetic separation since the environmental pollution that has become apparent with economic development has become serious. Through the technical review in this article, it is found that recent magnetic separation technologies have advanced to the level where social implementation is possible. Sustainable Development Goals (SDGs) and promotion of sustainable economies are the tailwinds for spreading magnetic separation with superconducting technology because of contributions to the environment, materials recycling, CO 2 reduction, cost reduction and innovation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
地球環境と超電導応用 特集「今だから話せる超電導コイル製作の経験談と将来への展望」に寄せて 2024年度(令和6年度)低温工学・超電導学会褒賞 超伝導量子アニーリング回路の実験知見と ゲート型量子コンピューターへの応用 超電導電磁力平衡ヘリカルコイルの巻線技術とトレーニング特性
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1