设计可理解的自组织系统

N. Höning, H. L. Poutré
{"title":"设计可理解的自组织系统","authors":"N. Höning, H. L. Poutré","doi":"10.1109/SASO.2010.18","DOIUrl":null,"url":null,"abstract":"Self-organising systems are a popular engineering concept for designing decentralised autonomic computing systems. They are able to find solutions in complex and versatile problem domains, but as they capture more complexity in their own design, they are becoming less and less comprehensible to their users (be they humans or intelligent agents). We describe a design challenge that relates to usability theory in general and in particular resembles an observation made by Phoebe Senger, who noted that software agents tend to become incomprehensible in their behaviour as they grow more complex. In the manifestation of self-organising systems, the problem is more urgent (since we find ourselves using them more and more) and harder to solve at the same time (since these systems are not centrally controlled). We describe the problem domain and propose three system properties that could be used as quality indicators in this regard: Stability, Learn ability and Engage ability. We demonstrate their usage in a simple model of dynamic pricing markets (e.g. the electricity domain) and evaluate them in different ways.","PeriodicalId":370044,"journal":{"name":"2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Designing Comprehensible Self-Organising Systems\",\"authors\":\"N. Höning, H. L. Poutré\",\"doi\":\"10.1109/SASO.2010.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-organising systems are a popular engineering concept for designing decentralised autonomic computing systems. They are able to find solutions in complex and versatile problem domains, but as they capture more complexity in their own design, they are becoming less and less comprehensible to their users (be they humans or intelligent agents). We describe a design challenge that relates to usability theory in general and in particular resembles an observation made by Phoebe Senger, who noted that software agents tend to become incomprehensible in their behaviour as they grow more complex. In the manifestation of self-organising systems, the problem is more urgent (since we find ourselves using them more and more) and harder to solve at the same time (since these systems are not centrally controlled). We describe the problem domain and propose three system properties that could be used as quality indicators in this regard: Stability, Learn ability and Engage ability. We demonstrate their usage in a simple model of dynamic pricing markets (e.g. the electricity domain) and evaluate them in different ways.\",\"PeriodicalId\":370044,\"journal\":{\"name\":\"2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASO.2010.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2010.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

自组织系统是一个流行的工程概念,用于设计分散的自主计算系统。它们能够在复杂和通用的问题领域中找到解决方案,但是随着它们在自己的设计中捕获更多的复杂性,它们对用户(无论是人类还是智能代理)来说变得越来越难以理解。我们描述了一个与可用性理论相关的设计挑战,特别类似于Phoebe Senger所做的观察,他指出,随着软件代理变得越来越复杂,它们的行为往往变得难以理解。在自组织系统的表现中,这个问题更加紧迫(因为我们发现自己越来越多地使用它们),同时也更难解决(因为这些系统不是集中控制的)。我们描述了问题域,并提出了三个可用作这方面质量指标的系统属性:稳定性、学习能力和参与能力。我们在动态定价市场(例如电力领域)的简单模型中演示了它们的使用,并以不同的方式对它们进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing Comprehensible Self-Organising Systems
Self-organising systems are a popular engineering concept for designing decentralised autonomic computing systems. They are able to find solutions in complex and versatile problem domains, but as they capture more complexity in their own design, they are becoming less and less comprehensible to their users (be they humans or intelligent agents). We describe a design challenge that relates to usability theory in general and in particular resembles an observation made by Phoebe Senger, who noted that software agents tend to become incomprehensible in their behaviour as they grow more complex. In the manifestation of self-organising systems, the problem is more urgent (since we find ourselves using them more and more) and harder to solve at the same time (since these systems are not centrally controlled). We describe the problem domain and propose three system properties that could be used as quality indicators in this regard: Stability, Learn ability and Engage ability. We demonstrate their usage in a simple model of dynamic pricing markets (e.g. the electricity domain) and evaluate them in different ways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Decentralized Formation of k-Member Partnerships Planning with Utility and State Trajectory Constraints in Self-Healing Automotive Systems Swarming Pattern Analysis to Identify IED Threat Quantitative Emergence -- A Refined Approach Based on Divergence Measures VCAE: A Virtualization and Consolidation Analysis Engine for Large Scale Data Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1