自底向上多人姿态估计的分区中心姿态网络

Jiahua Wu, H. Lee
{"title":"自底向上多人姿态估计的分区中心姿态网络","authors":"Jiahua Wu, H. Lee","doi":"10.1109/ICIP42928.2021.9506555","DOIUrl":null,"url":null,"abstract":"In bottom-up multi-person pose estimation method, grouping joint candidates into corresponding person instance is a challenging problem. In this paper, a new bottom-up method, Partitioned CenterPose (PCP) Network, is proposed to better cluster all detected joints. To achieve this goal, a novel Partition Pose Representation (PPR) is proposed which integrate person instance and body joint by joint offset. PPR leverages the center of human body and the offset between center point and body joint to encode human pose. To better enhance the relationship of body joints, we divide human body into five parts, and generate sub-PPR in each part. Based on PPR, PCP Network can detect persons and body joints simultaneously, and then grouping all body joints by joint offset. Moreover, an improved $\\ell_{1}$ loss is designed to obtain more accurate joint offset. On the COCO keypoints dataset, the proposed method performs on par with the existing state-of-the-art bottom-up method in accuracy and speed.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partitioned Centerpose Network for Bottom-Up Multi-Person Pose Estimation\",\"authors\":\"Jiahua Wu, H. Lee\",\"doi\":\"10.1109/ICIP42928.2021.9506555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In bottom-up multi-person pose estimation method, grouping joint candidates into corresponding person instance is a challenging problem. In this paper, a new bottom-up method, Partitioned CenterPose (PCP) Network, is proposed to better cluster all detected joints. To achieve this goal, a novel Partition Pose Representation (PPR) is proposed which integrate person instance and body joint by joint offset. PPR leverages the center of human body and the offset between center point and body joint to encode human pose. To better enhance the relationship of body joints, we divide human body into five parts, and generate sub-PPR in each part. Based on PPR, PCP Network can detect persons and body joints simultaneously, and then grouping all body joints by joint offset. Moreover, an improved $\\\\ell_{1}$ loss is designed to obtain more accurate joint offset. On the COCO keypoints dataset, the proposed method performs on par with the existing state-of-the-art bottom-up method in accuracy and speed.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在自下而上的多人姿态估计方法中,将联合候选对象分组到相应的人实例中是一个具有挑战性的问题。本文提出了一种新的自底向上的方法——Partitioned CenterPose (PCP) Network,以更好地聚类所有检测到的关节。为了实现这一目标,提出了一种新的分区姿态表示(PPR)方法,该方法通过关节偏移量将人实例和身体关节相结合。PPR利用人体的中心和中心点与身体关节之间的偏移量来编码人体姿势。为了更好地加强人体关节的关系,我们将人体分为五个部分,并在每个部分生成子ppr。基于PPR, PCP网络可以同时检测人和身体关节,然后根据关节偏移量对所有身体关节进行分组。此外,设计了改进的$\ell_{1}$损耗,以获得更精确的关节偏移量。在COCO关键点数据集上,该方法在精度和速度上与现有的最先进的自下而上方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Partitioned Centerpose Network for Bottom-Up Multi-Person Pose Estimation
In bottom-up multi-person pose estimation method, grouping joint candidates into corresponding person instance is a challenging problem. In this paper, a new bottom-up method, Partitioned CenterPose (PCP) Network, is proposed to better cluster all detected joints. To achieve this goal, a novel Partition Pose Representation (PPR) is proposed which integrate person instance and body joint by joint offset. PPR leverages the center of human body and the offset between center point and body joint to encode human pose. To better enhance the relationship of body joints, we divide human body into five parts, and generate sub-PPR in each part. Based on PPR, PCP Network can detect persons and body joints simultaneously, and then grouping all body joints by joint offset. Moreover, an improved $\ell_{1}$ loss is designed to obtain more accurate joint offset. On the COCO keypoints dataset, the proposed method performs on par with the existing state-of-the-art bottom-up method in accuracy and speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1