{"title":"变分时空运动分割","authors":"D. Cremers, Stefano Soatto","doi":"10.1109/ICCV.2003.1238442","DOIUrl":null,"url":null,"abstract":"We propose a variational method for segmenting image sequences into spatiotemporal domains of homogeneous motion. To this end, we formulate the problem of motion estimation in the framework of Bayesian inference, using a prior which favors domain boundaries of minimal surface area. We derive a cost functional which depends on a surface in space-time separating a set of motion regions, as well as a set of vectors modeling the motion in each region. We propose a multiphase level set formulation of this functional, in which the surface and the motion regions are represented implicitly by a vector-valued level set function. Joint minimization of the proposed functional results in an eigenvalue problem for the motion model of each region and in a gradient descent evolution for the separating interface. Numerical results on real-world sequences demonstrate that minimization of a single cost functional generates a segmentation of space-time into multiple motion regions.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"10 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Variational space-time motion segmentation\",\"authors\":\"D. Cremers, Stefano Soatto\",\"doi\":\"10.1109/ICCV.2003.1238442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a variational method for segmenting image sequences into spatiotemporal domains of homogeneous motion. To this end, we formulate the problem of motion estimation in the framework of Bayesian inference, using a prior which favors domain boundaries of minimal surface area. We derive a cost functional which depends on a surface in space-time separating a set of motion regions, as well as a set of vectors modeling the motion in each region. We propose a multiphase level set formulation of this functional, in which the surface and the motion regions are represented implicitly by a vector-valued level set function. Joint minimization of the proposed functional results in an eigenvalue problem for the motion model of each region and in a gradient descent evolution for the separating interface. Numerical results on real-world sequences demonstrate that minimization of a single cost functional generates a segmentation of space-time into multiple motion regions.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"10 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We propose a variational method for segmenting image sequences into spatiotemporal domains of homogeneous motion. To this end, we formulate the problem of motion estimation in the framework of Bayesian inference, using a prior which favors domain boundaries of minimal surface area. We derive a cost functional which depends on a surface in space-time separating a set of motion regions, as well as a set of vectors modeling the motion in each region. We propose a multiphase level set formulation of this functional, in which the surface and the motion regions are represented implicitly by a vector-valued level set function. Joint minimization of the proposed functional results in an eigenvalue problem for the motion model of each region and in a gradient descent evolution for the separating interface. Numerical results on real-world sequences demonstrate that minimization of a single cost functional generates a segmentation of space-time into multiple motion regions.