变分时空运动分割

D. Cremers, Stefano Soatto
{"title":"变分时空运动分割","authors":"D. Cremers, Stefano Soatto","doi":"10.1109/ICCV.2003.1238442","DOIUrl":null,"url":null,"abstract":"We propose a variational method for segmenting image sequences into spatiotemporal domains of homogeneous motion. To this end, we formulate the problem of motion estimation in the framework of Bayesian inference, using a prior which favors domain boundaries of minimal surface area. We derive a cost functional which depends on a surface in space-time separating a set of motion regions, as well as a set of vectors modeling the motion in each region. We propose a multiphase level set formulation of this functional, in which the surface and the motion regions are represented implicitly by a vector-valued level set function. Joint minimization of the proposed functional results in an eigenvalue problem for the motion model of each region and in a gradient descent evolution for the separating interface. Numerical results on real-world sequences demonstrate that minimization of a single cost functional generates a segmentation of space-time into multiple motion regions.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"10 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Variational space-time motion segmentation\",\"authors\":\"D. Cremers, Stefano Soatto\",\"doi\":\"10.1109/ICCV.2003.1238442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a variational method for segmenting image sequences into spatiotemporal domains of homogeneous motion. To this end, we formulate the problem of motion estimation in the framework of Bayesian inference, using a prior which favors domain boundaries of minimal surface area. We derive a cost functional which depends on a surface in space-time separating a set of motion regions, as well as a set of vectors modeling the motion in each region. We propose a multiphase level set formulation of this functional, in which the surface and the motion regions are represented implicitly by a vector-valued level set function. Joint minimization of the proposed functional results in an eigenvalue problem for the motion model of each region and in a gradient descent evolution for the separating interface. Numerical results on real-world sequences demonstrate that minimization of a single cost functional generates a segmentation of space-time into multiple motion regions.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"10 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

摘要

我们提出了一种将图像序列分割成均匀运动的时空域的变分方法。为此,我们在贝叶斯推理的框架下,利用有利于最小表面积域边界的先验,提出了运动估计问题。我们推导了一个代价函数,它依赖于时空中分离一组运动区域的表面,以及一组模拟每个区域运动的向量。我们提出了该泛函的多相水平集公式,其中曲面和运动区域由向量值水平集函数隐式表示。所提出的泛函的联合最小化结果是每个区域的运动模型的特征值问题和分离界面的梯度下降演化。在真实序列上的数值结果表明,单个代价函数的最小化可以将时空分割成多个运动区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variational space-time motion segmentation
We propose a variational method for segmenting image sequences into spatiotemporal domains of homogeneous motion. To this end, we formulate the problem of motion estimation in the framework of Bayesian inference, using a prior which favors domain boundaries of minimal surface area. We derive a cost functional which depends on a surface in space-time separating a set of motion regions, as well as a set of vectors modeling the motion in each region. We propose a multiphase level set formulation of this functional, in which the surface and the motion regions are represented implicitly by a vector-valued level set function. Joint minimization of the proposed functional results in an eigenvalue problem for the motion model of each region and in a gradient descent evolution for the separating interface. Numerical results on real-world sequences demonstrate that minimization of a single cost functional generates a segmentation of space-time into multiple motion regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of static and dynamic body biometrics for gait recognition Selection of scale-invariant parts for object class recognition Information theoretic focal length selection for real-time active 3D object tracking A multi-scale generative model for animate shapes and parts Integrated edge and junction detection with the boundary tensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1