OCPP安全-检测恶意流量的神经网络

A. Moroșan, Florin Pop
{"title":"OCPP安全-检测恶意流量的神经网络","authors":"A. Moroșan, Florin Pop","doi":"10.1145/3129676.3129693","DOIUrl":null,"url":null,"abstract":"Because the electric mobility has its focus on eco-friendly means of transport, a distributed platform designed for a smart city environment that can manage the electrical charging stations is vital. One of the major problems of distributed systems and cloud is security. The purpose of this article is to determine the malicious traffic using a backpropagation neural network. The main focus of the paper is to present a composite network that is able to detect faulted, random and normal types of traffic.","PeriodicalId":326100,"journal":{"name":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"OCPP security - Neural network for detecting malicious traffic\",\"authors\":\"A. Moroșan, Florin Pop\",\"doi\":\"10.1145/3129676.3129693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because the electric mobility has its focus on eco-friendly means of transport, a distributed platform designed for a smart city environment that can manage the electrical charging stations is vital. One of the major problems of distributed systems and cloud is security. The purpose of this article is to determine the malicious traffic using a backpropagation neural network. The main focus of the paper is to present a composite network that is able to detect faulted, random and normal types of traffic.\",\"PeriodicalId\":326100,\"journal\":{\"name\":\"Proceedings of the International Conference on Research in Adaptive and Convergent Systems\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Research in Adaptive and Convergent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3129676.3129693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3129676.3129693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

由于电动交通的重点是环保交通工具,因此为智能城市环境设计的分布式平台可以管理充电站至关重要。分布式系统和云计算的主要问题之一是安全性。本文的目的是使用反向传播神经网络来确定恶意流量。本文的主要重点是提出一种能够检测故障、随机和正常类型流量的复合网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OCPP security - Neural network for detecting malicious traffic
Because the electric mobility has its focus on eco-friendly means of transport, a distributed platform designed for a smart city environment that can manage the electrical charging stations is vital. One of the major problems of distributed systems and cloud is security. The purpose of this article is to determine the malicious traffic using a backpropagation neural network. The main focus of the paper is to present a composite network that is able to detect faulted, random and normal types of traffic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Extrinsic Depth Camera Calibration Method for Narrow Field of View Color Camera Motion Mode Recognition for Traffic Safety in Campus Guiding Application Failure Prediction by Utilizing Log Analysis: A Systematic Mapping Study PerfNet Road Surface Profiling based on Artificial-Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1