烷基苯绝缘油分解机理的分子动力学模拟

J. Liao, Zhifeng Liu, Mingchun Hou, F. Gao, Yufei Chen, Yongye Xu, Huaqiang Li, Chen Zhang
{"title":"烷基苯绝缘油分解机理的分子动力学模拟","authors":"J. Liao, Zhifeng Liu, Mingchun Hou, F. Gao, Yufei Chen, Yongye Xu, Huaqiang Li, Chen Zhang","doi":"10.1109/ICPES56491.2022.10072529","DOIUrl":null,"url":null,"abstract":"Alkylbenzene insulating oil is widely used in high-voltage submarine oil-filled cables because of its low viscosity, low dielectric loss, high breakdown field strength, excellent electric field gas evolution, but there is still a lack of research on the decomposition mechanism of alkylbenzene insulating oil at this stage. In this paper, the molecular model of alkylbenzene is constructed and optimized by density functional theory (DFT), and the rationality of the optimization method of molecular model is verified by infrared spectroscopy. In addition, the decomposition process of alkylbenzene molecules is simulated by molecular dynamics (MD) research method, and the decomposition mechanism of alkylbenzene insulating oil is obtained.","PeriodicalId":425438,"journal":{"name":"2022 12th International Conference on Power and Energy Systems (ICPES)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Dynamics Simulation of the Decomposition Mechanism of Alkylbenzene Insulating Oil\",\"authors\":\"J. Liao, Zhifeng Liu, Mingchun Hou, F. Gao, Yufei Chen, Yongye Xu, Huaqiang Li, Chen Zhang\",\"doi\":\"10.1109/ICPES56491.2022.10072529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alkylbenzene insulating oil is widely used in high-voltage submarine oil-filled cables because of its low viscosity, low dielectric loss, high breakdown field strength, excellent electric field gas evolution, but there is still a lack of research on the decomposition mechanism of alkylbenzene insulating oil at this stage. In this paper, the molecular model of alkylbenzene is constructed and optimized by density functional theory (DFT), and the rationality of the optimization method of molecular model is verified by infrared spectroscopy. In addition, the decomposition process of alkylbenzene molecules is simulated by molecular dynamics (MD) research method, and the decomposition mechanism of alkylbenzene insulating oil is obtained.\",\"PeriodicalId\":425438,\"journal\":{\"name\":\"2022 12th International Conference on Power and Energy Systems (ICPES)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 12th International Conference on Power and Energy Systems (ICPES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPES56491.2022.10072529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Power and Energy Systems (ICPES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPES56491.2022.10072529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

烷基苯绝缘油因其粘度低、介电损耗低、击穿场强高、电场析气性能优异而广泛应用于高压海底充油电缆中,但现阶段对烷基苯绝缘油的分解机理还缺乏研究。本文利用密度泛函理论(DFT)构建并优化了烷基苯的分子模型,并用红外光谱验证了分子模型优化方法的合理性。此外,采用分子动力学(MD)研究方法模拟了烷基苯分子的分解过程,得到了烷基苯绝缘油的分解机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular Dynamics Simulation of the Decomposition Mechanism of Alkylbenzene Insulating Oil
Alkylbenzene insulating oil is widely used in high-voltage submarine oil-filled cables because of its low viscosity, low dielectric loss, high breakdown field strength, excellent electric field gas evolution, but there is still a lack of research on the decomposition mechanism of alkylbenzene insulating oil at this stage. In this paper, the molecular model of alkylbenzene is constructed and optimized by density functional theory (DFT), and the rationality of the optimization method of molecular model is verified by infrared spectroscopy. In addition, the decomposition process of alkylbenzene molecules is simulated by molecular dynamics (MD) research method, and the decomposition mechanism of alkylbenzene insulating oil is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Scheduling Method for the Distribution Network Integrated with Multi-Energy Systems Considering Flexible Regulation Ability Methods for the Tower Fatigue Loads to Cumulative Based on Wind Direction Probabilistic Application of Thermal Resistance Dynamic Characteristics on High-Voltage Cable Ampacity Based on Field Circuit Coupling Method Residential Load Forecasting Based on CNN-LSTM and Non-uniform Quantization Application Scenario Analysis and Prospect of Electricity Emissions Factor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1