欠驱动多体系统的脱敏运动规划

P. Boscariol, D. Richiedei
{"title":"欠驱动多体系统的脱敏运动规划","authors":"P. Boscariol, D. Richiedei","doi":"10.3311/eccomasmbd2021-168","DOIUrl":null,"url":null,"abstract":"Model-plant mismatches can severely limit the effectiveness of conventional model-based motion design methods. To solve this issue, a method for robust trajectory planning that can reduce the effects of parametric uncertainties is presented in this work. The method is based on an indirect variational formulation, which is translated into a Two-Point Boundary Value Problem (TPBVP) and then solved numerically. Robustness is obtained by incorporating into the problem the sensitivity functions of the plant, and imposing some additional constraints on the initial and final points of the trajectory. A formulation aimed at reducing both the residual and the transient oscillations, as well as keeping small the control effort, is also proposed. The work presents a numerical verification of the effectiveness of the method for an underactuated system, such as a double-pendulum crane, by showing its effectiveness and robustness when performing fast rest-to-rest motions.","PeriodicalId":431921,"journal":{"name":"Proceedings of the 10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Desensitized motion planning for underactuated multibody systems\",\"authors\":\"P. Boscariol, D. Richiedei\",\"doi\":\"10.3311/eccomasmbd2021-168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-plant mismatches can severely limit the effectiveness of conventional model-based motion design methods. To solve this issue, a method for robust trajectory planning that can reduce the effects of parametric uncertainties is presented in this work. The method is based on an indirect variational formulation, which is translated into a Two-Point Boundary Value Problem (TPBVP) and then solved numerically. Robustness is obtained by incorporating into the problem the sensitivity functions of the plant, and imposing some additional constraints on the initial and final points of the trajectory. A formulation aimed at reducing both the residual and the transient oscillations, as well as keeping small the control effort, is also proposed. The work presents a numerical verification of the effectiveness of the method for an underactuated system, such as a double-pendulum crane, by showing its effectiveness and robustness when performing fast rest-to-rest motions.\",\"PeriodicalId\":431921,\"journal\":{\"name\":\"Proceedings of the 10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/eccomasmbd2021-168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/eccomasmbd2021-168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模型-植物不匹配严重限制了传统的基于模型的运动设计方法的有效性。为了解决这一问题,本文提出了一种能够减少参数不确定性影响的鲁棒轨迹规划方法。该方法基于间接变分公式,将其转化为两点边值问题(TPBVP),然后进行数值求解。鲁棒性是通过在问题中加入目标的灵敏度函数,并对轨迹的初始点和最终点施加一些附加约束来获得的。提出了一种既能减小残余和瞬态振荡,又能减小控制工作量的方法。该工作通过展示该方法在执行快速休止运动时的有效性和鲁棒性,对欠驱动系统(如双摆起重机)的有效性进行了数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Desensitized motion planning for underactuated multibody systems
Model-plant mismatches can severely limit the effectiveness of conventional model-based motion design methods. To solve this issue, a method for robust trajectory planning that can reduce the effects of parametric uncertainties is presented in this work. The method is based on an indirect variational formulation, which is translated into a Two-Point Boundary Value Problem (TPBVP) and then solved numerically. Robustness is obtained by incorporating into the problem the sensitivity functions of the plant, and imposing some additional constraints on the initial and final points of the trajectory. A formulation aimed at reducing both the residual and the transient oscillations, as well as keeping small the control effort, is also proposed. The work presents a numerical verification of the effectiveness of the method for an underactuated system, such as a double-pendulum crane, by showing its effectiveness and robustness when performing fast rest-to-rest motions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Steering Laws to Assist the Driving of a Independent Front and Rear Steering Vehicle Sloshing Dynamics Estimation for Liquid-filled Containers under 2-Dimensional Excitation A compliant and redundantly actuated 2-DOF 3RRR PKM: Less is more Dynamic Analysis of an Internal Turning Tool with Elastic Foundation (Winkler Model) ECCOMAS Thematic Conference on Multibody Dynamics 2021 Model Order Reduction for Elastic Multibody Systems with Fast Rotating Flexible Bodies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1