对象分类的判别基础

David Guillamet, Jordi Vitrià
{"title":"对象分类的判别基础","authors":"David Guillamet, Jordi Vitrià","doi":"10.1109/ICIAP.2001.957018","DOIUrl":null,"url":null,"abstract":"This paper presents a technique to obtain a discriminant basis set in an unsupervised way. A non-negative matrix factorization (NMF) is applied over a set of color newspapers to obtain a reduced space considering only positive constraints. This method is compared with the well-known principal component analysis (PCA), obtaining promising results in the task of representing independent behaviors of the input data. With this methodology, we are able to find an ordered list of the basis functions, with it being possible to select some of them for a further discriminant task. Moreover the method can also be applied to the task of automatically extracting object classes from a set of objects.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Discriminant basis for object classification\",\"authors\":\"David Guillamet, Jordi Vitrià\",\"doi\":\"10.1109/ICIAP.2001.957018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a technique to obtain a discriminant basis set in an unsupervised way. A non-negative matrix factorization (NMF) is applied over a set of color newspapers to obtain a reduced space considering only positive constraints. This method is compared with the well-known principal component analysis (PCA), obtaining promising results in the task of representing independent behaviors of the input data. With this methodology, we are able to find an ordered list of the basis functions, with it being possible to select some of them for a further discriminant task. Moreover the method can also be applied to the task of automatically extracting object classes from a set of objects.\",\"PeriodicalId\":365627,\"journal\":{\"name\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2001.957018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.957018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种以无监督方式获取判别基集的方法。将非负矩阵分解(NMF)应用于一组彩色报纸,得到仅考虑正约束的约简空间。该方法与著名的主成分分析(PCA)进行了比较,在表示输入数据的独立行为方面取得了令人满意的结果。使用这种方法,我们能够找到基函数的有序列表,并有可能选择其中的一些用于进一步的判别任务。此外,该方法还可以应用于从一组对象中自动提取对象类的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discriminant basis for object classification
This paper presents a technique to obtain a discriminant basis set in an unsupervised way. A non-negative matrix factorization (NMF) is applied over a set of color newspapers to obtain a reduced space considering only positive constraints. This method is compared with the well-known principal component analysis (PCA), obtaining promising results in the task of representing independent behaviors of the input data. With this methodology, we are able to find an ordered list of the basis functions, with it being possible to select some of them for a further discriminant task. Moreover the method can also be applied to the task of automatically extracting object classes from a set of objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Circle detection based on orientation matching Towards teleconferencing by view synthesis and large-baseline stereo Learning and caricaturing the face space using self-organization and Hebbian learning for face processing Bayesian face recognition with deformable image models Using feature-vector based analysis, based on principal component analysis and independent component analysis, for analysing hyperspectral images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1