协同过滤推荐系统中利用特定距离度量防御可疑用户

Zhihai Yang, Zhongmin Cai
{"title":"协同过滤推荐系统中利用特定距离度量防御可疑用户","authors":"Zhihai Yang, Zhongmin Cai","doi":"10.1109/ICDMW.2015.89","DOIUrl":null,"url":null,"abstract":"Collaborative filtering recommender systems (CFRSs) are critical components of existing popular e-commerce websites to make personalized recommendations. In practice, CFRSs are highly vulnerable to \"shilling\" attacks or \"profile injection\" attacks due to its openness. A number of detection methods have been proposed to make CFRSs resistant to such attacks. However, some of them distinguished attackers by using typical similarity metrics, which are difficult to fully defend all attackers and show high computation time, although they can be effective to capture the concerned attackers in some extent. In this paper, we propose an unsupervised method to detect such attacks. Firstly, we filter out more genuine users by using suspected target items as far as possible in order to reduce time consumption. Based on the remained result of the first stage, we employ a new similarity metric to further filter out the remained genuine users, which combines the traditional similarity metric and the linkage information between users to improve the accuracy of similarity of users. Experimental results show that our proposed detection method is superior to benchmarked method.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Defending Suspected Users by Exploiting Specific Distance Metric in Collaborative Filtering Recommender Systems\",\"authors\":\"Zhihai Yang, Zhongmin Cai\",\"doi\":\"10.1109/ICDMW.2015.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative filtering recommender systems (CFRSs) are critical components of existing popular e-commerce websites to make personalized recommendations. In practice, CFRSs are highly vulnerable to \\\"shilling\\\" attacks or \\\"profile injection\\\" attacks due to its openness. A number of detection methods have been proposed to make CFRSs resistant to such attacks. However, some of them distinguished attackers by using typical similarity metrics, which are difficult to fully defend all attackers and show high computation time, although they can be effective to capture the concerned attackers in some extent. In this paper, we propose an unsupervised method to detect such attacks. Firstly, we filter out more genuine users by using suspected target items as far as possible in order to reduce time consumption. Based on the remained result of the first stage, we employ a new similarity metric to further filter out the remained genuine users, which combines the traditional similarity metric and the linkage information between users to improve the accuracy of similarity of users. Experimental results show that our proposed detection method is superior to benchmarked method.\",\"PeriodicalId\":192888,\"journal\":{\"name\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2015.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

协同过滤推荐系统(CFRSs)是当前流行的电子商务网站进行个性化推荐的关键组件。实际上,由于cfrs的开放性,它极易受到“先令”攻击或“配置文件注入”攻击。已经提出了许多检测方法来使cfrs抵抗此类攻击。然而,其中一些方法使用典型的相似度度量来区分攻击者,这种方法在一定程度上可以有效地捕获相关攻击者,但难以完全防御所有攻击者,且计算时间长。在本文中,我们提出了一种无监督的方法来检测这种攻击。首先,我们尽可能使用可疑的目标项目来过滤掉更多的真实用户,以减少时间消耗。在第一阶段剩余用户的基础上,采用新的相似度度量进一步过滤剩余真实用户,将传统的相似度度量与用户间的关联信息相结合,提高用户相似度的准确性。实验结果表明,本文提出的检测方法优于基准检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Defending Suspected Users by Exploiting Specific Distance Metric in Collaborative Filtering Recommender Systems
Collaborative filtering recommender systems (CFRSs) are critical components of existing popular e-commerce websites to make personalized recommendations. In practice, CFRSs are highly vulnerable to "shilling" attacks or "profile injection" attacks due to its openness. A number of detection methods have been proposed to make CFRSs resistant to such attacks. However, some of them distinguished attackers by using typical similarity metrics, which are difficult to fully defend all attackers and show high computation time, although they can be effective to capture the concerned attackers in some extent. In this paper, we propose an unsupervised method to detect such attacks. Firstly, we filter out more genuine users by using suspected target items as far as possible in order to reduce time consumption. Based on the remained result of the first stage, we employ a new similarity metric to further filter out the remained genuine users, which combines the traditional similarity metric and the linkage information between users to improve the accuracy of similarity of users. Experimental results show that our proposed detection method is superior to benchmarked method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1