标签此文件夹的文件:页流分割的业务文件

Thisanaporn Mungmeeprued, Yuxin Ma, Nisarg Mehta, Aldo Lipani
{"title":"标签此文件夹的文件:页流分割的业务文件","authors":"Thisanaporn Mungmeeprued, Yuxin Ma, Nisarg Mehta, Aldo Lipani","doi":"10.1145/3558100.3563852","DOIUrl":null,"url":null,"abstract":"In the midst of digital transformation, automatically understanding the structure and composition of scanned documents is important in order to allow correct indexing, archiving, and processing. In many organizations, different types of documents are usually scanned together in folders, so it is essential to automate the task of segmenting the folders into documents which then proceed to further analysis tailored to specific document types. This task is known as Page Stream Segmentation (PSS). In this paper, we propose a deep learning solution to solve the task of determining whether or not a page is a breaking-point given a sequence of scanned pages (a folder) as input. We also provide a dataset called TABME (TAB this folder of docuMEnts) generated specifically for this task. Our proposed architecture combines LayoutLM and ResNet to exploit both textual and visual features of the document pages and achieves an F1 score of 0.953. The dataset and code used to run the experiments in this paper are available at the following web link: https://github.com/aldolipani/TABME.","PeriodicalId":146244,"journal":{"name":"Proceedings of the 22nd ACM Symposium on Document Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tab this folder of documents: page stream segmentation of business documents\",\"authors\":\"Thisanaporn Mungmeeprued, Yuxin Ma, Nisarg Mehta, Aldo Lipani\",\"doi\":\"10.1145/3558100.3563852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the midst of digital transformation, automatically understanding the structure and composition of scanned documents is important in order to allow correct indexing, archiving, and processing. In many organizations, different types of documents are usually scanned together in folders, so it is essential to automate the task of segmenting the folders into documents which then proceed to further analysis tailored to specific document types. This task is known as Page Stream Segmentation (PSS). In this paper, we propose a deep learning solution to solve the task of determining whether or not a page is a breaking-point given a sequence of scanned pages (a folder) as input. We also provide a dataset called TABME (TAB this folder of docuMEnts) generated specifically for this task. Our proposed architecture combines LayoutLM and ResNet to exploit both textual and visual features of the document pages and achieves an F1 score of 0.953. The dataset and code used to run the experiments in this paper are available at the following web link: https://github.com/aldolipani/TABME.\",\"PeriodicalId\":146244,\"journal\":{\"name\":\"Proceedings of the 22nd ACM Symposium on Document Engineering\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM Symposium on Document Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3558100.3563852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3558100.3563852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在数字化转换过程中,为了实现正确的索引、归档和处理,自动理解扫描文档的结构和组成非常重要。在许多组织中,不同类型的文档通常在文件夹中一起扫描,因此自动化将文件夹分割成文档的任务非常重要,然后根据特定的文档类型进行进一步分析。这个任务被称为页面流分割(PSS)。在本文中,我们提出了一个深度学习解决方案来解决给定扫描页面序列(文件夹)作为输入来确定页面是否为断点的任务。我们还提供了一个专门为此任务生成的名为TABME (TAB this folder of docuMEnts)的数据集。我们提出的架构结合了LayoutLM和ResNet来利用文档页面的文本和视觉特征,并获得了0.953的F1分数。用于运行本文中实验的数据集和代码可在以下web链接中获得:https://github.com/aldolipani/TABME。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tab this folder of documents: page stream segmentation of business documents
In the midst of digital transformation, automatically understanding the structure and composition of scanned documents is important in order to allow correct indexing, archiving, and processing. In many organizations, different types of documents are usually scanned together in folders, so it is essential to automate the task of segmenting the folders into documents which then proceed to further analysis tailored to specific document types. This task is known as Page Stream Segmentation (PSS). In this paper, we propose a deep learning solution to solve the task of determining whether or not a page is a breaking-point given a sequence of scanned pages (a folder) as input. We also provide a dataset called TABME (TAB this folder of docuMEnts) generated specifically for this task. Our proposed architecture combines LayoutLM and ResNet to exploit both textual and visual features of the document pages and achieves an F1 score of 0.953. The dataset and code used to run the experiments in this paper are available at the following web link: https://github.com/aldolipani/TABME.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How did dennis ritchie produce his PhD thesis?: a typographical mystery From print to online newspapers on small displays: a layout generation approach aimed at preserving entry points Binarization of photographed documents image quality, processing time and size assessment Tab this folder of documents: page stream segmentation of business documents Graphical document representation for french newsletters analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1