用半形式化方法分析自动飞行控制系统的模式转换逻辑

Rathina Kumar, J. Jayanthi
{"title":"用半形式化方法分析自动飞行控制系统的模式转换逻辑","authors":"Rathina Kumar, J. Jayanthi","doi":"10.4172/2168-9792.1000167","DOIUrl":null,"url":null,"abstract":"Autopilot system is a highly critical avionics system in modern aircraft as it steers the aircraft automatically. The autopilot is a highly complex system driven by a complex logic and is one of the major reasons for the accidents in automated airliner. The autopilot logic consists of the mode-transition logic which in automated mode steers the aircraft based on the aircraft aerodynamics. In the automated mode the correct and efficient working of the modetransition is highly critical; hence a high assurance approach is required to analyze the logic for its functionality and performance. In this paper, we present a semi-formal method based approach to analyze and validate the Mode-Transition Logic (MTL) for an indigenously developed commercial aircraft in the vertical and lateral directions. The MTL is analyzed and validated for its correct, complete, and reliable functionality and operation using Stateflow. The modeled MTL logic is validated for the allowed transitions based on the input combinations against the requirements for functionality and safety. The outcome of the approach shows encouraging results with respect to assurance in functionality, performance and safety in comparison to the conventional manual approach of testing. Similar semiformal based approach can be used to reduce the design effort in the design and development of complex system designs as compared to the manual analysis.","PeriodicalId":356774,"journal":{"name":"Journal of Aeronautics and Aerospace Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyze the Mode Transition Logic of Automatic Flight Control System using Semi-Formal Approach\",\"authors\":\"Rathina Kumar, J. Jayanthi\",\"doi\":\"10.4172/2168-9792.1000167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autopilot system is a highly critical avionics system in modern aircraft as it steers the aircraft automatically. The autopilot is a highly complex system driven by a complex logic and is one of the major reasons for the accidents in automated airliner. The autopilot logic consists of the mode-transition logic which in automated mode steers the aircraft based on the aircraft aerodynamics. In the automated mode the correct and efficient working of the modetransition is highly critical; hence a high assurance approach is required to analyze the logic for its functionality and performance. In this paper, we present a semi-formal method based approach to analyze and validate the Mode-Transition Logic (MTL) for an indigenously developed commercial aircraft in the vertical and lateral directions. The MTL is analyzed and validated for its correct, complete, and reliable functionality and operation using Stateflow. The modeled MTL logic is validated for the allowed transitions based on the input combinations against the requirements for functionality and safety. The outcome of the approach shows encouraging results with respect to assurance in functionality, performance and safety in comparison to the conventional manual approach of testing. Similar semiformal based approach can be used to reduce the design effort in the design and development of complex system designs as compared to the manual analysis.\",\"PeriodicalId\":356774,\"journal\":{\"name\":\"Journal of Aeronautics and Aerospace Engineering\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aeronautics and Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9792.1000167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aeronautics and Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9792.1000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶仪是现代飞机中非常关键的航电系统,它能自动操纵飞机。自动驾驶仪是一个由复杂逻辑驱动的高度复杂的系统,是造成自动驾驶客机事故的主要原因之一。自动驾驶逻辑由模式转换逻辑组成,模式转换逻辑在自动模式下根据飞机空气动力学原理对飞机进行操纵。在自动化模式下,正确、高效地进行模式转换至关重要;因此,需要一种高保证方法来分析其功能和性能的逻辑。在本文中,我们提出了一种基于半形式化方法的方法来分析和验证自主开发的商用飞机在垂直和横向方向上的模式转换逻辑(MTL)。使用statflow分析和验证MTL的正确、完整和可靠的功能和操作。建模的MTL逻辑根据功能和安全需求的输入组合验证允许的转换。与传统的手动测试方法相比,该方法的结果在功能、性能和安全性方面显示出令人鼓舞的结果。与手工分析相比,可以使用类似的基于半形式化的方法来减少复杂系统设计和开发中的设计工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyze the Mode Transition Logic of Automatic Flight Control System using Semi-Formal Approach
Autopilot system is a highly critical avionics system in modern aircraft as it steers the aircraft automatically. The autopilot is a highly complex system driven by a complex logic and is one of the major reasons for the accidents in automated airliner. The autopilot logic consists of the mode-transition logic which in automated mode steers the aircraft based on the aircraft aerodynamics. In the automated mode the correct and efficient working of the modetransition is highly critical; hence a high assurance approach is required to analyze the logic for its functionality and performance. In this paper, we present a semi-formal method based approach to analyze and validate the Mode-Transition Logic (MTL) for an indigenously developed commercial aircraft in the vertical and lateral directions. The MTL is analyzed and validated for its correct, complete, and reliable functionality and operation using Stateflow. The modeled MTL logic is validated for the allowed transitions based on the input combinations against the requirements for functionality and safety. The outcome of the approach shows encouraging results with respect to assurance in functionality, performance and safety in comparison to the conventional manual approach of testing. Similar semiformal based approach can be used to reduce the design effort in the design and development of complex system designs as compared to the manual analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanical Behavior of a Fuselage Stiffened Carbon-Epoxy Panel under Debonding Load On the Modeling of Light Aircraft Landing Gears Various aspects of situation awareness with respect to human-machine-interaction while using optoavionic cockpit instrumentation in aircraft Autopilot Design of Unmanned Aerial Vehicle A New Methodology for Aerodynamic Design and Analysis of a Small Scale Blended Wing Body
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1