使用弱节点集群的能量比例查询执行

D. Schall, T. Härder
{"title":"使用弱节点集群的能量比例查询执行","authors":"D. Schall, T. Härder","doi":"10.1145/2485278.2485279","DOIUrl":null,"url":null,"abstract":"Because energy use of single-server systems is far from being energy proportional, we explore whether or not better energy efficiency may be achieved by a cluster of nodes whose size is dynamically adjusted to the current workload demand. As data-intensive workloads, we submit specific TPC-H queries against a distributed shared-nothing DBMS, where time and energy use are captured by specific monitoring and measurement devices. We configure various static clusters of varying sizes and show their influence on energy efficiency and performance. Further, using an EnergyController and a load-aware scheduler, we verify the hypothesis that energy proportionality can be well approximated by dynamic clusters.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Energy-proportional query execution using a cluster of wimpy nodes\",\"authors\":\"D. Schall, T. Härder\",\"doi\":\"10.1145/2485278.2485279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because energy use of single-server systems is far from being energy proportional, we explore whether or not better energy efficiency may be achieved by a cluster of nodes whose size is dynamically adjusted to the current workload demand. As data-intensive workloads, we submit specific TPC-H queries against a distributed shared-nothing DBMS, where time and energy use are captured by specific monitoring and measurement devices. We configure various static clusters of varying sizes and show their influence on energy efficiency and performance. Further, using an EnergyController and a load-aware scheduler, we verify the hypothesis that energy proportionality can be well approximated by dynamic clusters.\",\"PeriodicalId\":298901,\"journal\":{\"name\":\"International Workshop on Data Management on New Hardware\",\"volume\":\"2011 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Data Management on New Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2485278.2485279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2485278.2485279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

由于单服务器系统的能源使用远不是与能源成比例的,因此我们探讨了通过动态调整节点大小以适应当前工作负载需求的集群是否可以实现更好的能源效率。作为数据密集型工作负载,我们针对分布式无共享DBMS提交特定的TPC-H查询,其中时间和能源使用由特定的监控和测量设备捕获。我们配置了不同大小的静态集群,并展示了它们对能源效率和性能的影响。此外,使用EnergyController和负载感知调度器,我们验证了动态集群可以很好地近似能量比例的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy-proportional query execution using a cluster of wimpy nodes
Because energy use of single-server systems is far from being energy proportional, we explore whether or not better energy efficiency may be achieved by a cluster of nodes whose size is dynamically adjusted to the current workload demand. As data-intensive workloads, we submit specific TPC-H queries against a distributed shared-nothing DBMS, where time and energy use are captured by specific monitoring and measurement devices. We configure various static clusters of varying sizes and show their influence on energy efficiency and performance. Further, using an EnergyController and a load-aware scheduler, we verify the hypothesis that energy proportionality can be well approximated by dynamic clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On testing persistent-memory-based software SIMD-accelerated regular expression matching FPGA-accelerated group-by aggregation using synchronizing caches Customized OS support for data-processing Larger-than-memory data management on modern storage hardware for in-memory OLTP database systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1