数据网络中特定领域的反向链接服务

M. Salvadores, Gianluca Correndo, M. Szomszor, Yang Yang, Nicholas Gibbins, Ian Millard, H. Glaser, N. Shadbolt
{"title":"数据网络中特定领域的反向链接服务","authors":"M. Salvadores, Gianluca Correndo, M. Szomszor, Yang Yang, Nicholas Gibbins, Ian Millard, H. Glaser, N. Shadbolt","doi":"10.1109/WI-IAT.2010.34","DOIUrl":null,"url":null,"abstract":"This paper describes an Open Linked Data backlinking service, a generic architecture component to support the discovery of useful links between items across highly connected data sets. Using Public Sector Information (PSI) currently available as Linked Data, we demonstrate that contemporary publishing practices do not adequately support the ability to navigate or automatically traverse between resources published by different vendors, or the capacity to discover information relevant to a particular URI. Although some useful services in this area have been developed, such as large triple indexes of published data, and the collection of same. As relationships between individuals, we believe that an important component is missing: a mechanism to discover the backlinks to relevant resources that cannot be found by direct URI resolution. We present the implementation of such a component, integrating data from various PSI sources.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Domain-Specific Backlinking Services in the Web of Data\",\"authors\":\"M. Salvadores, Gianluca Correndo, M. Szomszor, Yang Yang, Nicholas Gibbins, Ian Millard, H. Glaser, N. Shadbolt\",\"doi\":\"10.1109/WI-IAT.2010.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an Open Linked Data backlinking service, a generic architecture component to support the discovery of useful links between items across highly connected data sets. Using Public Sector Information (PSI) currently available as Linked Data, we demonstrate that contemporary publishing practices do not adequately support the ability to navigate or automatically traverse between resources published by different vendors, or the capacity to discover information relevant to a particular URI. Although some useful services in this area have been developed, such as large triple indexes of published data, and the collection of same. As relationships between individuals, we believe that an important component is missing: a mechanism to discover the backlinks to relevant resources that cannot be found by direct URI resolution. We present the implementation of such a component, integrating data from various PSI sources.\",\"PeriodicalId\":340211,\"journal\":{\"name\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文描述了一个开放关联数据反向链接服务,这是一个通用的架构组件,用于支持在高度连接的数据集中发现项目之间的有用链接。通过使用当前作为关联数据的公共部门信息(PSI),我们证明了当代出版实践不能充分支持导航或自动遍历由不同供应商发布的资源的能力,也不能充分支持发现与特定URI相关的信息的能力。虽然在这一领域已经开发了一些有用的服务,例如已发布数据的大型三重索引和相同的集合。作为个体之间的关系,我们认为缺少一个重要的组成部分:一种发现直接URI解析无法找到的相关资源的反向链接的机制。我们介绍了这样一个组件的实现,它集成了来自各种PSI源的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Domain-Specific Backlinking Services in the Web of Data
This paper describes an Open Linked Data backlinking service, a generic architecture component to support the discovery of useful links between items across highly connected data sets. Using Public Sector Information (PSI) currently available as Linked Data, we demonstrate that contemporary publishing practices do not adequately support the ability to navigate or automatically traverse between resources published by different vendors, or the capacity to discover information relevant to a particular URI. Although some useful services in this area have been developed, such as large triple indexes of published data, and the collection of same. As relationships between individuals, we believe that an important component is missing: a mechanism to discover the backlinks to relevant resources that cannot be found by direct URI resolution. We present the implementation of such a component, integrating data from various PSI sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game Theory for Security: Lessons Learned from Deployed Applications A Decision Rule Method for Assessing the Completeness and Consistency of a Data Warehouse Semantic Structure Content for Dynamic Web Pages Enhancing the Performance of Metadata Service for Cloud Computing Improving Diversity of Focused Summaries through the Negative Endorsements of Redundant Facts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1