食品图像分析的跨模态变分框架

T. Theodoridis, V. Solachidis, K. Dimitropoulos, P. Daras
{"title":"食品图像分析的跨模态变分框架","authors":"T. Theodoridis, V. Solachidis, K. Dimitropoulos, P. Daras","doi":"10.1109/ICIP40778.2020.9190758","DOIUrl":null,"url":null,"abstract":"Food analysis resides at the core of modern nutrition recommender systems, providing the foundation for a high-level understanding of users’ eating habits. This paper focuses on the sub-task of ingredient recognition from food images using a variational framework. The framework consists of two variational encoder-decoder branches, aimed at processing information from different modalities (images and text), as well as a variational mapper branch, which accomplishes the task of aligning the distributions of the individual branches. Experimental results on the Yummly-28K data-set showcase that the proposed framework performs better than similar variational frameworks, while it surpasses current state-of-the-art approaches on the large-scale Recipe1M data-set.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Cross-Modal Variational Framework For Food Image Analysis\",\"authors\":\"T. Theodoridis, V. Solachidis, K. Dimitropoulos, P. Daras\",\"doi\":\"10.1109/ICIP40778.2020.9190758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Food analysis resides at the core of modern nutrition recommender systems, providing the foundation for a high-level understanding of users’ eating habits. This paper focuses on the sub-task of ingredient recognition from food images using a variational framework. The framework consists of two variational encoder-decoder branches, aimed at processing information from different modalities (images and text), as well as a variational mapper branch, which accomplishes the task of aligning the distributions of the individual branches. Experimental results on the Yummly-28K data-set showcase that the proposed framework performs better than similar variational frameworks, while it surpasses current state-of-the-art approaches on the large-scale Recipe1M data-set.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9190758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

食物分析是现代营养推荐系统的核心,为高层次地了解用户的饮食习惯提供了基础。本文主要研究了基于变分框架的食品图像成分识别子任务。该框架包括两个变分编码器-解码器分支,旨在处理来自不同模式(图像和文本)的信息,以及一个变分映射器分支,完成对齐各个分支分布的任务。yumly - 28k数据集上的实验结果表明,所提出的框架比类似的变分框架性能更好,同时在大规模Recipe1M数据集上超越了当前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Cross-Modal Variational Framework For Food Image Analysis
Food analysis resides at the core of modern nutrition recommender systems, providing the foundation for a high-level understanding of users’ eating habits. This paper focuses on the sub-task of ingredient recognition from food images using a variational framework. The framework consists of two variational encoder-decoder branches, aimed at processing information from different modalities (images and text), as well as a variational mapper branch, which accomplishes the task of aligning the distributions of the individual branches. Experimental results on the Yummly-28K data-set showcase that the proposed framework performs better than similar variational frameworks, while it surpasses current state-of-the-art approaches on the large-scale Recipe1M data-set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1