T. Theodoridis, V. Solachidis, K. Dimitropoulos, P. Daras
{"title":"食品图像分析的跨模态变分框架","authors":"T. Theodoridis, V. Solachidis, K. Dimitropoulos, P. Daras","doi":"10.1109/ICIP40778.2020.9190758","DOIUrl":null,"url":null,"abstract":"Food analysis resides at the core of modern nutrition recommender systems, providing the foundation for a high-level understanding of users’ eating habits. This paper focuses on the sub-task of ingredient recognition from food images using a variational framework. The framework consists of two variational encoder-decoder branches, aimed at processing information from different modalities (images and text), as well as a variational mapper branch, which accomplishes the task of aligning the distributions of the individual branches. Experimental results on the Yummly-28K data-set showcase that the proposed framework performs better than similar variational frameworks, while it surpasses current state-of-the-art approaches on the large-scale Recipe1M data-set.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Cross-Modal Variational Framework For Food Image Analysis\",\"authors\":\"T. Theodoridis, V. Solachidis, K. Dimitropoulos, P. Daras\",\"doi\":\"10.1109/ICIP40778.2020.9190758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Food analysis resides at the core of modern nutrition recommender systems, providing the foundation for a high-level understanding of users’ eating habits. This paper focuses on the sub-task of ingredient recognition from food images using a variational framework. The framework consists of two variational encoder-decoder branches, aimed at processing information from different modalities (images and text), as well as a variational mapper branch, which accomplishes the task of aligning the distributions of the individual branches. Experimental results on the Yummly-28K data-set showcase that the proposed framework performs better than similar variational frameworks, while it surpasses current state-of-the-art approaches on the large-scale Recipe1M data-set.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9190758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Cross-Modal Variational Framework For Food Image Analysis
Food analysis resides at the core of modern nutrition recommender systems, providing the foundation for a high-level understanding of users’ eating habits. This paper focuses on the sub-task of ingredient recognition from food images using a variational framework. The framework consists of two variational encoder-decoder branches, aimed at processing information from different modalities (images and text), as well as a variational mapper branch, which accomplishes the task of aligning the distributions of the individual branches. Experimental results on the Yummly-28K data-set showcase that the proposed framework performs better than similar variational frameworks, while it surpasses current state-of-the-art approaches on the large-scale Recipe1M data-set.