基于混合软计算的癌症遗传学特征选择

S. Thangavelu, A. S, K C Naetra, Krishna Sathya A C, V. Lasya
{"title":"基于混合软计算的癌症遗传学特征选择","authors":"S. Thangavelu, A. S, K C Naetra, Krishna Sathya A C, V. Lasya","doi":"10.1109/I-SMAC47947.2019.9032435","DOIUrl":null,"url":null,"abstract":"Microarray databases are the most frequently used datasets for cancer analytics. Microarray databases are characterized by the presence of a very large number of genes, which exceeds the very little number of samples. So, the feature set accumulates the curse of dimensionality. Therefore, selecting a small subset of genes among thousands of genes in microarray data can potentially increase the accuracy for the classification of cancer. Many approaches, from the field of classical machine learning and soft computing, have been used to address the issue of feature selection and feature extraction for better classifications and clustering accuracy. The research outlined in this paper strives to look at a two-stage approach using minimum Redundancy Maximum Relevancy (mRMR), a feature ranking framework as the first stage followed by a hybrid genetic algorithm in the second stage that works on the features ranked by the mRMR. The proposed method is aimed to select the optimal feature subsets for better classification results in binary and multi class datasets to compensate for the curse of dimensionality in microarray datasets. The classifiers used to test the two-stage proposition are SVM, Naive-Bayes, Linear Discriminant Analysis, decision trees and random forest classifiers. The experimental results show that the gene subset selected by the mRMR-GA pipeline gives good results.","PeriodicalId":275791,"journal":{"name":"2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Feature Selection in Cancer Genetics using Hybrid Soft Computing\",\"authors\":\"S. Thangavelu, A. S, K C Naetra, Krishna Sathya A C, V. Lasya\",\"doi\":\"10.1109/I-SMAC47947.2019.9032435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarray databases are the most frequently used datasets for cancer analytics. Microarray databases are characterized by the presence of a very large number of genes, which exceeds the very little number of samples. So, the feature set accumulates the curse of dimensionality. Therefore, selecting a small subset of genes among thousands of genes in microarray data can potentially increase the accuracy for the classification of cancer. Many approaches, from the field of classical machine learning and soft computing, have been used to address the issue of feature selection and feature extraction for better classifications and clustering accuracy. The research outlined in this paper strives to look at a two-stage approach using minimum Redundancy Maximum Relevancy (mRMR), a feature ranking framework as the first stage followed by a hybrid genetic algorithm in the second stage that works on the features ranked by the mRMR. The proposed method is aimed to select the optimal feature subsets for better classification results in binary and multi class datasets to compensate for the curse of dimensionality in microarray datasets. The classifiers used to test the two-stage proposition are SVM, Naive-Bayes, Linear Discriminant Analysis, decision trees and random forest classifiers. The experimental results show that the gene subset selected by the mRMR-GA pipeline gives good results.\",\"PeriodicalId\":275791,\"journal\":{\"name\":\"2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I-SMAC47947.2019.9032435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC47947.2019.9032435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

微阵列数据库是癌症分析中最常用的数据集。微阵列数据库的特点是存在非常大量的基因,这超过了非常少的样本数量。因此,特征集积累了维度的诅咒。因此,在微阵列数据中的数千个基因中选择一小部分基因可以潜在地提高癌症分类的准确性。经典机器学习和软计算领域的许多方法已被用于解决特征选择和特征提取问题,以获得更好的分类和聚类精度。本文概述的研究努力研究一种使用最小冗余最大相关性(mRMR)的两阶段方法,该方法将特征排序框架作为第一阶段,然后在第二阶段使用混合遗传算法对mRMR排序的特征进行处理。该方法旨在选择最优的特征子集以获得更好的二分类和多分类结果,以弥补微阵列数据集的维数缺陷。用于测试两阶段命题的分类器有支持向量机、朴素贝叶斯、线性判别分析、决策树和随机森林分类器。实验结果表明,mRMR-GA管道选择的基因子集具有良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature Selection in Cancer Genetics using Hybrid Soft Computing
Microarray databases are the most frequently used datasets for cancer analytics. Microarray databases are characterized by the presence of a very large number of genes, which exceeds the very little number of samples. So, the feature set accumulates the curse of dimensionality. Therefore, selecting a small subset of genes among thousands of genes in microarray data can potentially increase the accuracy for the classification of cancer. Many approaches, from the field of classical machine learning and soft computing, have been used to address the issue of feature selection and feature extraction for better classifications and clustering accuracy. The research outlined in this paper strives to look at a two-stage approach using minimum Redundancy Maximum Relevancy (mRMR), a feature ranking framework as the first stage followed by a hybrid genetic algorithm in the second stage that works on the features ranked by the mRMR. The proposed method is aimed to select the optimal feature subsets for better classification results in binary and multi class datasets to compensate for the curse of dimensionality in microarray datasets. The classifiers used to test the two-stage proposition are SVM, Naive-Bayes, Linear Discriminant Analysis, decision trees and random forest classifiers. The experimental results show that the gene subset selected by the mRMR-GA pipeline gives good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeepStreak: Automating Car Racing Games for Self Driving using Artificial Intelligence Simulators, Emulators, and Test-beds for Internet of Things: A Comparison CNN based speaker recognition in language and text-independent small scale system Comparative Analysis of Relay Selection Techniques in Free Space Optics Natural language processing and Machine learning based phishing website detection system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1