{"title":"具有线性复杂度的快速自适应PARAFAC分解算法","authors":"V. Nguyen, K. Abed-Meraim, N. Linh-Trung","doi":"10.1109/ICASSP.2016.7472876","DOIUrl":null,"url":null,"abstract":"We present a fast adaptive PARAFAC decomposition algorithm with low computational complexity. The proposed algorithm generalizes the Orthonormal Projection Approximation Subspace Tracking (OPAST) approach for tracking a class of third-order tensors which have one dimension growing with time. It has linear complexity, good convergence rate and good estimation accuracy. To deal with large-scale problems, a parallel implementation can be applied to reduce both computational complexity and storage. We illustrate the effectiveness of our algorithm in comparison with the state-of-the-art algorithms through simulation experiments.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"720 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fast adaptive PARAFAC decomposition algorithm with linear complexity\",\"authors\":\"V. Nguyen, K. Abed-Meraim, N. Linh-Trung\",\"doi\":\"10.1109/ICASSP.2016.7472876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a fast adaptive PARAFAC decomposition algorithm with low computational complexity. The proposed algorithm generalizes the Orthonormal Projection Approximation Subspace Tracking (OPAST) approach for tracking a class of third-order tensors which have one dimension growing with time. It has linear complexity, good convergence rate and good estimation accuracy. To deal with large-scale problems, a parallel implementation can be applied to reduce both computational complexity and storage. We illustrate the effectiveness of our algorithm in comparison with the state-of-the-art algorithms through simulation experiments.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"720 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast adaptive PARAFAC decomposition algorithm with linear complexity
We present a fast adaptive PARAFAC decomposition algorithm with low computational complexity. The proposed algorithm generalizes the Orthonormal Projection Approximation Subspace Tracking (OPAST) approach for tracking a class of third-order tensors which have one dimension growing with time. It has linear complexity, good convergence rate and good estimation accuracy. To deal with large-scale problems, a parallel implementation can be applied to reduce both computational complexity and storage. We illustrate the effectiveness of our algorithm in comparison with the state-of-the-art algorithms through simulation experiments.