一种有效的无监督特征选择贪心方法

Ahmed K. Farahat, A. Ghodsi, M. Kamel
{"title":"一种有效的无监督特征选择贪心方法","authors":"Ahmed K. Farahat, A. Ghodsi, M. Kamel","doi":"10.1109/ICDM.2011.22","DOIUrl":null,"url":null,"abstract":"In data mining applications, data instances are typically described by a huge number of features. Most of these features are irrelevant or redundant, which negatively affects the efficiency and effectiveness of different learning algorithms. The selection of relevant features is a crucial task which can be used to allow a better understanding of data or improve the performance of other learning tasks. Although the selection of relevant features has been extensively studied in supervised learning, feature selection with the absence of class labels is still a challenging task. This paper proposes a novel method for unsupervised feature selection, which efficiently selects features in a greedy manner. The paper first defines an effective criterion for unsupervised feature selection which measures the reconstruction error of the data matrix based on the selected subset of features. The paper then presents a novel algorithm for greedily minimizing the reconstruction error based on the features selected so far. The greedy algorithm is based on an efficient recursive formula for calculating the reconstruction error. Experiments on real data sets demonstrate the effectiveness of the proposed algorithm in comparison to the state-of-the-art methods for unsupervised feature selection.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"An Efficient Greedy Method for Unsupervised Feature Selection\",\"authors\":\"Ahmed K. Farahat, A. Ghodsi, M. Kamel\",\"doi\":\"10.1109/ICDM.2011.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In data mining applications, data instances are typically described by a huge number of features. Most of these features are irrelevant or redundant, which negatively affects the efficiency and effectiveness of different learning algorithms. The selection of relevant features is a crucial task which can be used to allow a better understanding of data or improve the performance of other learning tasks. Although the selection of relevant features has been extensively studied in supervised learning, feature selection with the absence of class labels is still a challenging task. This paper proposes a novel method for unsupervised feature selection, which efficiently selects features in a greedy manner. The paper first defines an effective criterion for unsupervised feature selection which measures the reconstruction error of the data matrix based on the selected subset of features. The paper then presents a novel algorithm for greedily minimizing the reconstruction error based on the features selected so far. The greedy algorithm is based on an efficient recursive formula for calculating the reconstruction error. Experiments on real data sets demonstrate the effectiveness of the proposed algorithm in comparison to the state-of-the-art methods for unsupervised feature selection.\",\"PeriodicalId\":106216,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Data Mining\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2011.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

摘要

在数据挖掘应用程序中,数据实例通常由大量特征描述。这些特征大多是不相关或冗余的,这对不同学习算法的效率和有效性产生了负面影响。相关特征的选择是一项至关重要的任务,可以用来更好地理解数据或提高其他学习任务的性能。尽管相关特征的选择在监督学习中已经得到了广泛的研究,但缺乏类标签的特征选择仍然是一个具有挑战性的任务。提出了一种新的无监督特征选择方法,以贪婪的方式有效地选择特征。本文首先定义了一种有效的无监督特征选择准则,该准则基于所选择的特征子集来度量数据矩阵的重构误差。在此基础上,提出了一种基于已有特征的贪婪最小化重构误差的算法。贪婪算法是基于一个有效的递归公式来计算重建误差。在真实数据集上的实验表明,与最先进的无监督特征选择方法相比,所提出的算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Greedy Method for Unsupervised Feature Selection
In data mining applications, data instances are typically described by a huge number of features. Most of these features are irrelevant or redundant, which negatively affects the efficiency and effectiveness of different learning algorithms. The selection of relevant features is a crucial task which can be used to allow a better understanding of data or improve the performance of other learning tasks. Although the selection of relevant features has been extensively studied in supervised learning, feature selection with the absence of class labels is still a challenging task. This paper proposes a novel method for unsupervised feature selection, which efficiently selects features in a greedy manner. The paper first defines an effective criterion for unsupervised feature selection which measures the reconstruction error of the data matrix based on the selected subset of features. The paper then presents a novel algorithm for greedily minimizing the reconstruction error based on the features selected so far. The greedy algorithm is based on an efficient recursive formula for calculating the reconstruction error. Experiments on real data sets demonstrate the effectiveness of the proposed algorithm in comparison to the state-of-the-art methods for unsupervised feature selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonnegative Matrix Tri-factorization Based High-Order Co-clustering and Its Fast Implementation Helix: Unsupervised Grammar Induction for Structured Activity Recognition Partitionable Kernels for Mapping Kernels Multi-task Learning for Bayesian Matrix Factorization Discovering the Intrinsic Cardinality and Dimensionality of Time Series Using MDL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1