使用深度学习技术通过手势解释表情

Sameena Javaid, S. Rizvi, Muhammad Talha Ubaid, A. Darboe, Shakir Mahmood Mayo
{"title":"使用深度学习技术通过手势解释表情","authors":"Sameena Javaid, S. Rizvi, Muhammad Talha Ubaid, A. Darboe, Shakir Mahmood Mayo","doi":"10.33411/ijist/2022040225","DOIUrl":null,"url":null,"abstract":"It is a challenging task to interpret sign language automatically, as it comprises high-level vision features to accurately understand and interpret the meaning of the signer or vice versa. In the current study, we automatically distinguish hand signs and classify seven basic gestures representing symbolic emotions or expressions like happy, sad, neutral, disgust, scared, anger, and surprise. Convolutional Neural Network is a famous method for classifications using vision-based deep learning; here in the current study, proposed transfer learning using a well-known architecture of VGG16 to speed up the convergence and improve accuracy by using pre-trained weights. We obtained a high accuracy of 99.98% of the proposed architecture with a minimal and low-quality data set of 455 images collected by 65 individuals for seven hand gesture classes. Further, compared the performance of VGG16 architecture with two different optimizers, SGD, and Adam, along with some more architectures of Alex Net, LeNet05, and ResNet50.","PeriodicalId":330306,"journal":{"name":"Vol 4 Issue 2","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interpretation of Expressions through Hand Signs Using Deep Learning Techniques\",\"authors\":\"Sameena Javaid, S. Rizvi, Muhammad Talha Ubaid, A. Darboe, Shakir Mahmood Mayo\",\"doi\":\"10.33411/ijist/2022040225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a challenging task to interpret sign language automatically, as it comprises high-level vision features to accurately understand and interpret the meaning of the signer or vice versa. In the current study, we automatically distinguish hand signs and classify seven basic gestures representing symbolic emotions or expressions like happy, sad, neutral, disgust, scared, anger, and surprise. Convolutional Neural Network is a famous method for classifications using vision-based deep learning; here in the current study, proposed transfer learning using a well-known architecture of VGG16 to speed up the convergence and improve accuracy by using pre-trained weights. We obtained a high accuracy of 99.98% of the proposed architecture with a minimal and low-quality data set of 455 images collected by 65 individuals for seven hand gesture classes. Further, compared the performance of VGG16 architecture with two different optimizers, SGD, and Adam, along with some more architectures of Alex Net, LeNet05, and ResNet50.\",\"PeriodicalId\":330306,\"journal\":{\"name\":\"Vol 4 Issue 2\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vol 4 Issue 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33411/ijist/2022040225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vol 4 Issue 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33411/ijist/2022040225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动翻译手语是一项具有挑战性的任务,因为它包含高级视觉特征,以准确理解和解释签名者的意思,反之亦然。在目前的研究中,我们自动区分手势,并将七种代表象征性情绪或表达的基本手势分类,如快乐、悲伤、中性、厌恶、害怕、愤怒和惊讶。卷积神经网络是一种著名的基于视觉的深度学习分类方法;在本研究中,我们提出了使用VGG16的知名架构进行迁移学习,通过使用预训练的权值来加速收敛并提高准确性。我们使用最小和低质量的数据集(由65个人收集的455张图像,用于7个手势类别)获得了99.98%的准确率。此外,将VGG16架构与两个不同的优化器SGD和Adam以及Alex Net、LeNet05和ResNet50等架构的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interpretation of Expressions through Hand Signs Using Deep Learning Techniques
It is a challenging task to interpret sign language automatically, as it comprises high-level vision features to accurately understand and interpret the meaning of the signer or vice versa. In the current study, we automatically distinguish hand signs and classify seven basic gestures representing symbolic emotions or expressions like happy, sad, neutral, disgust, scared, anger, and surprise. Convolutional Neural Network is a famous method for classifications using vision-based deep learning; here in the current study, proposed transfer learning using a well-known architecture of VGG16 to speed up the convergence and improve accuracy by using pre-trained weights. We obtained a high accuracy of 99.98% of the proposed architecture with a minimal and low-quality data set of 455 images collected by 65 individuals for seven hand gesture classes. Further, compared the performance of VGG16 architecture with two different optimizers, SGD, and Adam, along with some more architectures of Alex Net, LeNet05, and ResNet50.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prominence of Filtering Techniques for Harmonics Mitigation in Advanced Power Electronics Systems Knowledge Acquisition System for Sentiment Analysis Determination and Mitigation of Urban Heat Island (UHI) In Lahore (A comparative Study of Landsat 8&9) A Study of Reasons behind Unproductivity and In-decisiveness in public Institutions of Urban Planning in Pakistan. Interpretation of Expressions through Hand Signs Using Deep Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1