{"title":"无线网络中的分布式波束形成建模","authors":"K. Hardwick, D. Goeckel, D. Towsley","doi":"10.1109/ALLERTON.2008.4797596","DOIUrl":null,"url":null,"abstract":"Distributed beamforming in wireless ad hoc networks has the promise of greatly improving network throughput. However, unlike traditional beamforming from a fixed array, the random locations of the nodes collaborating to form the array lead to a random beam pattern. In particular, the position and size of side lobes can vary greatly and have a significant impact on the concurrent transmissions that are the source of much of the throughput gain realized from distributed beamforming. Here, we present a simple model that captures this randomness and then use the model to consider the average throughput of a large ad hoc wireless networks. Numerical results are compared to those obtained if one employs the oft-used pie-wedge approximation for a directed antenna beam, and the difference is shown to be significant in regions where the side lobe interference is non-negligible.","PeriodicalId":120561,"journal":{"name":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modeling distributed beamforming in wireless networks\",\"authors\":\"K. Hardwick, D. Goeckel, D. Towsley\",\"doi\":\"10.1109/ALLERTON.2008.4797596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed beamforming in wireless ad hoc networks has the promise of greatly improving network throughput. However, unlike traditional beamforming from a fixed array, the random locations of the nodes collaborating to form the array lead to a random beam pattern. In particular, the position and size of side lobes can vary greatly and have a significant impact on the concurrent transmissions that are the source of much of the throughput gain realized from distributed beamforming. Here, we present a simple model that captures this randomness and then use the model to consider the average throughput of a large ad hoc wireless networks. Numerical results are compared to those obtained if one employs the oft-used pie-wedge approximation for a directed antenna beam, and the difference is shown to be significant in regions where the side lobe interference is non-negligible.\",\"PeriodicalId\":120561,\"journal\":{\"name\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2008.4797596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2008.4797596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling distributed beamforming in wireless networks
Distributed beamforming in wireless ad hoc networks has the promise of greatly improving network throughput. However, unlike traditional beamforming from a fixed array, the random locations of the nodes collaborating to form the array lead to a random beam pattern. In particular, the position and size of side lobes can vary greatly and have a significant impact on the concurrent transmissions that are the source of much of the throughput gain realized from distributed beamforming. Here, we present a simple model that captures this randomness and then use the model to consider the average throughput of a large ad hoc wireless networks. Numerical results are compared to those obtained if one employs the oft-used pie-wedge approximation for a directed antenna beam, and the difference is shown to be significant in regions where the side lobe interference is non-negligible.