Jianyu Shi, Xiaohong Liu, Guoxing Yang, Guangyu Wang
{"title":"基于GAN的增强CT图像生成改进甲状腺解剖检测","authors":"Jianyu Shi, Xiaohong Liu, Guoxing Yang, Guangyu Wang","doi":"10.1109/BIBM55620.2022.9995366","DOIUrl":null,"url":null,"abstract":"Computed tomography (CT) is one of the most imaging methods widely used to locate lesions such as nodules, tumors, and cysts, and make primary diagnosis. For clearer imaging of anatomical or lesions, contrast-enhanced CT (CECT) scans are imaging with injecting a contrast agent into a patient during examination. But there are limits to iodine contrast injections so that CECT scans are not convenient like non-contrast enhanced CT (NECT). Recently, deep learning models bring impressive results in computer vision, including image translation. So, we would like to apply image translation methods to generate CECT images from the more accessible NECT images, and evaluate the effects of generated images on image detection tasks. In this study, we propose a method called cross-modal enhancement training strategy for thyroid anatomy detection, which employs CycleGAN to translate non-constrast enhanced CT images to enhanced CT style images with content reserved. The experiments are conducted on thyroid CT images with anatomy object annotation. The experimental results show that by adding translated images into the training dataset, the performance of thyroid anatomy detection can be effectively improved. We achieve the best mAP of 82.5% compared to 73.2% in the along non-contrast enhanced CT training.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced CT Image Generation by GAN for Improving Thyroid Anatomy Detection\",\"authors\":\"Jianyu Shi, Xiaohong Liu, Guoxing Yang, Guangyu Wang\",\"doi\":\"10.1109/BIBM55620.2022.9995366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computed tomography (CT) is one of the most imaging methods widely used to locate lesions such as nodules, tumors, and cysts, and make primary diagnosis. For clearer imaging of anatomical or lesions, contrast-enhanced CT (CECT) scans are imaging with injecting a contrast agent into a patient during examination. But there are limits to iodine contrast injections so that CECT scans are not convenient like non-contrast enhanced CT (NECT). Recently, deep learning models bring impressive results in computer vision, including image translation. So, we would like to apply image translation methods to generate CECT images from the more accessible NECT images, and evaluate the effects of generated images on image detection tasks. In this study, we propose a method called cross-modal enhancement training strategy for thyroid anatomy detection, which employs CycleGAN to translate non-constrast enhanced CT images to enhanced CT style images with content reserved. The experiments are conducted on thyroid CT images with anatomy object annotation. The experimental results show that by adding translated images into the training dataset, the performance of thyroid anatomy detection can be effectively improved. We achieve the best mAP of 82.5% compared to 73.2% in the along non-contrast enhanced CT training.\",\"PeriodicalId\":210337,\"journal\":{\"name\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM55620.2022.9995366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced CT Image Generation by GAN for Improving Thyroid Anatomy Detection
Computed tomography (CT) is one of the most imaging methods widely used to locate lesions such as nodules, tumors, and cysts, and make primary diagnosis. For clearer imaging of anatomical or lesions, contrast-enhanced CT (CECT) scans are imaging with injecting a contrast agent into a patient during examination. But there are limits to iodine contrast injections so that CECT scans are not convenient like non-contrast enhanced CT (NECT). Recently, deep learning models bring impressive results in computer vision, including image translation. So, we would like to apply image translation methods to generate CECT images from the more accessible NECT images, and evaluate the effects of generated images on image detection tasks. In this study, we propose a method called cross-modal enhancement training strategy for thyroid anatomy detection, which employs CycleGAN to translate non-constrast enhanced CT images to enhanced CT style images with content reserved. The experiments are conducted on thyroid CT images with anatomy object annotation. The experimental results show that by adding translated images into the training dataset, the performance of thyroid anatomy detection can be effectively improved. We achieve the best mAP of 82.5% compared to 73.2% in the along non-contrast enhanced CT training.