基于统计建模的处方欺诈检测

Hongxiang Zhang, Lizhen Wang
{"title":"基于统计建模的处方欺诈检测","authors":"Hongxiang Zhang, Lizhen Wang","doi":"10.1145/3208788.3208803","DOIUrl":null,"url":null,"abstract":"The emergence of prescription fraud will reduce the effectiveness of health insurance investment. This paper will propose a new model to identify potentially fraudulent prescriptions and apply it to real prescription data to test its performance. Because of the low efficiency and high cost of prescription fraud through artificial experts, and because of the limitations of human knowledge, artificial detection is slow and insensitive to new fraud. We used the statistical characteristics of prescription data and other features related to the prescription to measure the risk level of the prescription, and found a prescription with high risk. The potential of this model can be used not only for off-line and online analysis and prediction of prescription fraud, but also for automatic updating of new fraud prescriptions. We test the model on real prescription data sets and compared to other approaches. The experimental results show that our model is promising for discovering the prescription fraud from the real health care data sets.","PeriodicalId":211585,"journal":{"name":"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prescription fraud detection through statistic modeling\",\"authors\":\"Hongxiang Zhang, Lizhen Wang\",\"doi\":\"10.1145/3208788.3208803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of prescription fraud will reduce the effectiveness of health insurance investment. This paper will propose a new model to identify potentially fraudulent prescriptions and apply it to real prescription data to test its performance. Because of the low efficiency and high cost of prescription fraud through artificial experts, and because of the limitations of human knowledge, artificial detection is slow and insensitive to new fraud. We used the statistical characteristics of prescription data and other features related to the prescription to measure the risk level of the prescription, and found a prescription with high risk. The potential of this model can be used not only for off-line and online analysis and prediction of prescription fraud, but also for automatic updating of new fraud prescriptions. We test the model on real prescription data sets and compared to other approaches. The experimental results show that our model is promising for discovering the prescription fraud from the real health care data sets.\",\"PeriodicalId\":211585,\"journal\":{\"name\":\"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208788.3208803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208788.3208803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

处方造假的出现将降低医保投资的有效性。本文将提出一个新的模型来识别潜在的欺诈处方,并将其应用于真实的处方数据来测试其性能。由于通过人工专家进行处方造假的效率低、成本高,而且由于人类知识的局限性,人工检测速度慢,对新的造假行为不敏感。我们利用处方数据的统计特征和其他与处方相关的特征来衡量处方的风险水平,发现了一个高风险的处方。该模型的潜力不仅可以用于处方欺诈的离线和在线分析和预测,还可以用于自动更新新的欺诈处方。我们在真实处方数据集上测试了模型,并与其他方法进行了比较。实验结果表明,我们的模型可以从真实的医疗数据集中发现处方欺诈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prescription fraud detection through statistic modeling
The emergence of prescription fraud will reduce the effectiveness of health insurance investment. This paper will propose a new model to identify potentially fraudulent prescriptions and apply it to real prescription data to test its performance. Because of the low efficiency and high cost of prescription fraud through artificial experts, and because of the limitations of human knowledge, artificial detection is slow and insensitive to new fraud. We used the statistical characteristics of prescription data and other features related to the prescription to measure the risk level of the prescription, and found a prescription with high risk. The potential of this model can be used not only for off-line and online analysis and prediction of prescription fraud, but also for automatic updating of new fraud prescriptions. We test the model on real prescription data sets and compared to other approaches. The experimental results show that our model is promising for discovering the prescription fraud from the real health care data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-point boundary value problems for fuzzy differential equations under generalized differentiability Background subtraction via online box constrained RPCA Bayesian analysis for multivariate skew-normal reproductive dispersion random effects models A diversity-based method for class-imbalanced cost-sensitive learning The Merrifield-Simmons index of two classes of lexicographic product graphs of corona graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1