{"title":"弹性包头压缩的卷积编码","authors":"V. Suryavanshi, Aria Nosratinia","doi":"10.1109/GLOCOM.2005.1577744","DOIUrl":null,"url":null,"abstract":"This paper proposes a system using convolutional codes to mitigate error propagation in packet header compression. Convolutional codes are a class of forward error correction (FEC) codes, and their use is motivated because on uni-directional links loss of even one packet can render subsequent packets useless. A combination of two interleavers is used to address channel memory and increase the power of the code, and the optimum yet computationally efficient Viterbi algorithm is used for decoding at the receiver. Simulation results demonstrate the advantages of the proposed scheme.","PeriodicalId":319736,"journal":{"name":"GLOBECOM '05. IEEE Global Telecommunications Conference, 2005.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Convolutional coding for resilient packet header compression\",\"authors\":\"V. Suryavanshi, Aria Nosratinia\",\"doi\":\"10.1109/GLOCOM.2005.1577744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a system using convolutional codes to mitigate error propagation in packet header compression. Convolutional codes are a class of forward error correction (FEC) codes, and their use is motivated because on uni-directional links loss of even one packet can render subsequent packets useless. A combination of two interleavers is used to address channel memory and increase the power of the code, and the optimum yet computationally efficient Viterbi algorithm is used for decoding at the receiver. Simulation results demonstrate the advantages of the proposed scheme.\",\"PeriodicalId\":319736,\"journal\":{\"name\":\"GLOBECOM '05. IEEE Global Telecommunications Conference, 2005.\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM '05. IEEE Global Telecommunications Conference, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2005.1577744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM '05. IEEE Global Telecommunications Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2005.1577744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convolutional coding for resilient packet header compression
This paper proposes a system using convolutional codes to mitigate error propagation in packet header compression. Convolutional codes are a class of forward error correction (FEC) codes, and their use is motivated because on uni-directional links loss of even one packet can render subsequent packets useless. A combination of two interleavers is used to address channel memory and increase the power of the code, and the optimum yet computationally efficient Viterbi algorithm is used for decoding at the receiver. Simulation results demonstrate the advantages of the proposed scheme.